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ABSTRACT Public wireless networks have evolved from convenient amenities into critical urban
infrastructure, yet they remain fundamentally susceptible to identity-based exploits. The "Evil Twin" attack
persists as a significant threat because client devices implicitly trust broadcast identifiers before a secure
encryption channel is established. Existing defense mechanisms typically rely on either prohibitively ex-
pensive Wireless Intrusion Prevention Systems (WIPS), which necessitate centralized wired infrastructure,
or computationally intensive Deep Learning models that exceed the resource capabilities of edge sensors.
This paper presents WiMapper, a detection framework engineered specifically for Resource-Constrained
Edge Devices (RCEDs) with less than 320 KB of SRAM. The architecture employs a two-stage hybrid
approach: Track A utilizes a deterministic whitelist for immediate threat filtering, while Track B deploys a
One-Class Support Vector Machine (OC-SVM) with a Radial Basis Function (RBF) kernel to assess signal
integrity. By analyzing higher-order statistical features—specifically Kurtosis and Skewness—the model
identifies non-Gaussian anomalies characteristic of signal spoofing. Extensive simulations using the HCXY
dataset and subsequent field validation demonstrated that WiMapper achieves a Pareto-optimal balance
between efficiency and accuracy. The framework attained a mean F1-Score of 0.827 with an algorithmic
inference latency of 0.25 ms and a memory footprint of 190 KB. These metrics confirm that the kernel-
based approach significantly outperforms Isolation Forest and Autoencoder baselines, rendering it a viable
solution for dense, low-power security sensor networks.

INDEX TERMS Edge Computing, Network Security, One-Class SVM, Rogue Access Points, Wireless

Sensor Networks, RSSI Analysis, [oT Security.

. INTRODUCTION

EEE 802.11 (Wi-Fi) networks have transformed from

local connectivity solutions into essential utilities that un-
derpin daily operations in airports, stadiums, and metropoli-
tan centers. As connectivity becomes ubiquitous, the inherent
security model of the protocol reveals critical vulnerabilities
regarding identity verification.

In a standard connection handshake, a client device—such
as a smartphone or an industrial [oT sensor—trusts an Access
Point (AP) based primarily on its advertised Service Set
Identifier (SSID) and Media Access Control (MAC) address.
Malicious actors exploit this implicit trust through "Evil
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Twin" attacks. In this scenario, an adversary configures a
radio device to broadcast the precise credentials of a legit-
imate trusted network. To the client device, the counterfeit
AP appears identical to the authorized infrastructure. Once a
user connects, the attacker establishes a Man-in-the-Middle
(MitM) position, enabling the interception of unencrypted
data, the injection of malicious payloads, or the harvesting
of credentials before the user detects a breach.

As reliance on public networks intensifies, attack method-
ologies have become increasingly sophisticated. Automated
tools can now dynamically adjust signal strength to over-
power legitimate APs, forcing client devices to associate
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with the malicious node. Consequently, effective defense
mechanisms must be as dynamic and adaptive as the threats
they aim to mitigate.

A. THE PRE-ASSOCIATION VULNERABILITY

A significant limitation of host-based security software, such
as VPNs or OS-level firewalls, is that they operate primarily
at the Network Layer (Layer 3) or above. These tools inspect
data packets after a connection is established and an IP
address is assigned. This creates a timing failure defined in
this study as the Pre-Association Vulnerability.

To analyze the threat using standard host-based tools, the
client device must first associate with the network. How-
ever, the act of associating exposes the device to the attack.
The moment the Layer 2 (Data Link) handshake concludes,
the attacker controls the communication channel. Therefore,
rigorous security monitoring must occur Out-of-Band. This
necessitates an independent sensor capable of monitoring the
Radio Frequency (RF) environment and identifying threats
solely from unencrypted management frames, such as Bea-
cons, before any legitimate client attempts to connect. This
preventive approach mitigates the risk by alerting users prior
to device exposure.

B. OPERATIONAL CONSTRAINTS AND SCALABILITY
While Out-of-Band monitoring addresses the timing issue,
the implementation strategy presents challenges regarding
hardware scalability. Enterprise environments often employ
Wireless Intrusion Prevention Systems (WIPS), which are
effective but rely on expensive sensors connected via wired
backhaul to central servers. This centralized model is un-
suitable for ad-hoc or temporary deployments where wired
infrastructure is unavailable.

Conversely, utilizing single-board computers running full
operating systems as portable sensors is often impractical for
mass deployment due to specific limitations:

1) Scalability and Cost: Securing large public venues
requires a dense sensor array to overcome signal shad-
owing and limited range. Deploying high-cost single-
board computers is economically inefficient. In con-
trast, commodity microcontrollers (MCUs) are signifi-
cantly more cost-effective. This cost differential allows
for the deployment of a higher volume of sensors
within the same budget, ensuring comprehensive cov-
erage without blind spots.

2) Power Efficiency: Devices running full operating sys-
tems incur substantial power overhead due to back-
ground processes and require significant boot time. A
"bare-metal" microcontroller provides instant-on capa-
bility and deep sleep modes, allowing for extended
operation on battery power. This efficiency facilitates
"drop-and-forget" deployment strategies in locations
where frequent maintenance is not feasible.

This study establishes a strict Design Constraint: the
detection algorithm must execute entirely within the SRAM
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limits of a standard Resource-Constrained Edge Device
(RCED), defined here as having less than 320 KB of memory.
Furthermore, it must operate in real-time without reliance
on cloud offloading. This requirement excludes state-of-the-
art Deep Learning models, such as Transformers or complex
Autoencoders, which typically require runtime libraries and
model weights that exceed the available memory on these
devices.

C. CONTRIBUTIONS

To resolve the conflict between diagnostic accuracy and ex-
treme resource limitations, this paper introduces WiMapper.
This hybrid framework is predicated on the insight that
kernel-based statistical learning can offer non-linear sepa-
ration capabilities comparable to neural networks, but with
significantly lower computational overhead.

The primary contributions of this work include:

o A Hybrid Detection Architecture: The framework
utilizes a multi-stage system to balance efficiency and
rigor. Track A employs a deterministic whitelist for
immediate rejection of naive threats, while Track B de-
ploys a One-Class Support Vector Machine (OC-SVM)
to analyze signal integrity. This tiered structure min-
imizes the computational load by reserving intensive
processing only for ambiguous signals.

o Higher-Order Statistical Characterization: The
study validates the utility of Kurtosis and Skewness as
robust digital fingerprints. The methodology demon-
strates that these features capture specific impulsive
noise artifacts introduced by packet injection tools,
enabling the model to distinguish artificial spoofing
from natural environmental fading.

« Pareto-Optimal Efficiency: Rigorous benchmarking
confirms the system’s viability for edge deployment.
WiMapper achieved a mean F1-Score of 0.827 with a
memory footprint of 190 KB. These results position the
solution on the Pareto Frontier, offering superior accu-
racy compared to lightweight Isolation Forests while
remaining efficient enough for the target hardware class.

The remainder of this paper is organized as follows: Sec-
tion [[I| reviews existing literature. Section [[II] establishes the
system model. Section details the WiMapper architec-
ture. Section [V]describes the experimental setup. Section [V]]
presents the performance analysis. Section[VII|discusses field
validation. Finally, Section [VIII|concludes the paper.

Il. RELATED WORK

The challenge of securing the wireless edge has driven exten-
sive research across three distinct paradigms: infrastructure-
centric monitoring, host-based defenses, and algorithmic
anomaly detection [I]-[3]. This section critically reviews
the state-of-the-art to identify the specific architectural and
computational gaps addressed by the WiMapper framework.
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A. INFRASTRUCTURE-CENTRIC MONITORING (WIPS)
The current gold standard for enterprise-grade wireless se-
curity is the Wireless Intrusion Prevention System (WIPS)
[1], [4]]. Market leaders deploy dedicated sensor nodes that
continuously scan the RF spectrum, independent of data traf-
fic [[1]], [5]. These systems operate by comparing discovered
Basic Service Set Identifiers (BSSIDs) against a centralized,
manually curated whitelist of authorized hardware.

Advanced WIPS implementations go beyond simple iden-
tifier matching. They utilize "RF Fingerprinting" or Radio-
metric Identification [6], [7]. This technique analyzes unique
physical imperfections in the radio transmitter—such as
clock skew, transient turn-on signatures, or modulation er-
rors—to identify cloned devices [|6]. Because these hardware
imperfections are artifacts of the manufacturing process,
they are difficult for an attacker to replicate purely through
software manipulation [6]], [8]].

While highly effective in controlled, static environments,
WIPS solutions are architecturally unsuited for the decentral-
ized and ad-hoc use cases targeted by this study [/1]].

« Immobility and Infrastructure Dependency: WIPS
relies on a wired backhaul to a central controller for sig-
nature analysis [[1]]. This creates a "dome of protection”
that exists only where the infrastructure is physically
installed. A user moving through a public terminal,
staying in a hotel, or renting a temporary workspace
leaves this protected zone, entering a vulnerability blind
spot where no external monitor exists [[1], [2].

« Economic Exclusion: The high capital expenditure of
commercial WIPS nodes (often exceeding hundreds of
dollars per unit) limits their deployment to large enter-
prises and government facilities [1]. Small businesses,
public squares, and developing regions remain vulner-
able, creating a "security divide" based on economic
resources [2]].

B. HOST-CENTRIC AND CLIENT-SIDE DEFENSES
Recognizing the limitations of fixed infrastructure, re-
searchers have attempted to shift detection logic to the client
device [9]-[11]. Solutions in this category typically involve
software agents running on the user’s laptop or smartphone.
These agents monitor network layer metrics, such as Round
Trip Time (RTT), Domain Name System (DNS) resolution
patterns, or the availability of duplicate SSIDs, to infer the
presence of an attacker [9], [|10].

Howeyver, host-centric defenses face insurmountable hard-
ware abstraction barriers imposed by modern Operating Sys-
tems (OS). Network Interface Cards (NICs) and their asso-
ciated drivers are designed for connectivity, not surveillance
[10].

o Abstraction Blindness: OS architectures (Windows,
macOS, Android) typically abstract away raw manage-
ment frames [[10], [11]]. A standard application cannot
easily access the raw Received Signal Strength Indicator
(RSSI) of a beacon frame or inspect the Information El-
ements (IEs) inside a Probe Response. Without access to
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these raw Layer 2 headers, client-side software lacks the
physical visibility required to detect a well-configured
Evil Twin [9], [10].

« The Pre-Association Gap: As noted in Section[I] these
tools often suffer from a critical timing failure. They
activate only after the network interface has associated
and an IP address has been assigned [10]], [11]]. By this
moment, the device has already exposed its MAC ad-
dress and potentially exchanged handshake credentials
with the rogue node [9].

C. MACHINE LEARNING IN WIRELESS SECURITY

The failure of static, rule-based systems to detect adaptive
attackers—who can spoof MAC addresses and mimic SSID
strings—has led to the widespread adoption of Machine
Learning (ML) for anomaly detection [[1]]-[3|], [|12]].

1) Deep Learning Models
Recent literature heavily favors Deep Learning (DL) archi-
tectures [1]], [3]. Recurrent Neural Networks (RNNs) and
Long Short-Term Memory (LSTM) networks have shown
significant success in modeling the temporal sequence of
RSSI values, predicting the expected signal path and flagging
deviations [13]]. Similarly, Autoencoders (AEs) have been
employed for unsupervised anomaly detection, trained to
reconstruct "normal” traffic patterns and identifying threats
based on high reconstruction errors [[14]]—[17].

While diagnostically powerful, these models violate the
constraints of the target hardware class (RCEDs).

o Computational Bloat: The inference phase of a stan-
dard Autoencoder involves dense matrix multiplications
(O(N?) complexity). For a fully connected layer, this
requires thousands of floating-point operations per sam-
ple. On a microcontroller lacking a dedicated Floating
Point Unit (FPU) or Tensor Accelerator, these opera-
tions must be emulated in software, drastically extend-
ing the CPU duty cycle and draining the battery [1], [2]],
[LL8]].

o Memory Constraints: The storage requirement for
model weights and the necessary runtime interpreter
(e.g., TensorFlow Lite Micro) often exceeds the
megabyte range. This makes them undeployable on
microcontrollers with kilobyte-scale SRAM, forcing re-
liance on cloud offloading, which reintroduces latency
and privacy risks [2], [3]l.

2) Lightweight Statistical Models
To address resource constraints, researchers have explored
lighter alternatives such as Gaussian Mixture Models
(GMMs) and Isolation Forests (IF) [[18]—[20]. These algo-
rithms are computationally efficient, often requiring only lin-
ear time complexity (O(N)), and fit easily within constrained
memory [12], [20].

However, these models typically rely on linear or axis-
parallel decision boundaries. This study indicates that so-
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phisticated "Signal Cloning" attacks create non-linear dis-
tortions in the feature space [6]], [[7]. An adaptive attacker
may successfully mimic the mean signal strength (fooling a
linear classifier) but fail to replicate the distribution’s shape
[[8]. Isolation Forests, which partition data using random
orthogonal cuts, often lack the sensitivity to detect these
subtle distributional shifts (e.g., changes in Kurtosis), leading
to high False Negative rates against competent attackers [20]].

D. THE GAP ANALYSIS

Table [T|summarizes the current landscape. A clear Security-
Resource Gap exists: high-accuracy models (Deep Learn-
ing) are too heavy for scalable deployment, while lightweight
models (Isolation Forests) lack the diagnostic precision to
ensure safety against adaptive threats [/1]], [3]], [[12].

TABLE 1: Comparative Analysis of Wireless Security
Paradigms

Methodology Hardware Latency Primary Limitation
Class
Enterprise Server + Low High Cost, Immobil-
WIPS Wired Nodes ity [[1]], [5]
Host-Based Laptop / Medium OS Restrictions,
Agents Phone CPU Late Detection [9]-
(11]
Deep Learning GPU / High- High Resource Bloat
(AE/LSTM) End CPU (>1MB RAM)
(14]-{17]
Isolation Forest ~ Commodity Low Linear Boundaries
MCU (Low Accuracy) [20]
WiMapper Commodity Low None (Pareto Opti-
(Proposed) MCU mal)

WiMapper bridges this specific gap. By utilizing a kernel-
based One-Class SVM, the framework achieves the non-
linear separation capabilities usually reserved for Deep
Learning, while maintaining a memory footprint small
enough for the most constrained microcontrollers [[16], [20].
This approach democratizes high-fidelity wireless security,
enabling the deployment of "sensor swarms" without the cost
or power penalties of traditional approaches [1]], [2].

lll. SYSTEM MODEL AND THEORETICAL FRAMEWORK

To mathematically formalize the deficiencies of the lin-
ear models identified in Section [l the physical nature of
the threat landscape is first characterized. Given the strict
memory limits established in Section [} utilizing raw wave-
form analysis or complex time-series forecasting models
like LSTMs is not feasible. Instead, the system models the
signal environment using statistical moments. This approach
compresses high-frequency RF data into a compact feature
vector while retaining the signatures of attack artifacts. This
section details the threat model, provides the theoretical basis
for signal propagation, and derives the statistical features
used to identify anomalies.

A. THE ATTACKER MODEL
The public Wi-Fi threat landscape, visually represented as
Zone 1 in Fig. m includes two distinct classes of attackers,
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categorized by their sophistication and the resources required
to detect them.

1) Type 1: Naive Impersonation

This attacker establishes a Rogue Access Point (RAP) broad-
casting a legitimate Service Set Identifier (SSID) (e.g.,
"Free_Airport_WiFi") but creates the network using a ran-
dom or default Media Access Control (MAC) address. This
represents a common attack form, often launched using
smartphone hotspots or unconfigured laptops. Because these
attacks fail to clone the hardware address, they are deter-
ministic in nature. Detection is achieved by comparing the
broadcast BSSID against a known whitelist of authorized
hardware addresses (Track A).

2) Type 2: Adaptive Signal Cloning

The Type 2 attacker represents a higher threat tier. Hereafter
referred to as an "Evil Twin" in the visual analysis, this
adversary utilizes specialized hardware—such as high-gain
directional antennas and packet injection suites—to spoof
both the SSID and the MAC address of the target AP.
Furthermore, the attacker physically positions the device to
match the Receive Signal Strength Indicator (RSSI) of the
legitimate AP, effectively blending into the environment’s
baseline noise floor.

Because the identifiers and the mean signal strength mimic
the legitimate infrastructure, linear filters cannot detect this
threat. Detection requires analyzing the statistical quality
and distributional shape of the signal. This is the primary
objective of the Track B analysis.

B. SIGNAL PROPAGATION AND ANOMALY THEORY
The propagation of wireless signals in a complex indoor
environment is modeled using the Log-Distance Path Loss
equation. The received power P, (d) at a distance d from the
transmitter is given by:

d
Pr:v(d)dBm = Po(do) —10n loglo <d0> — XU (1)

where P, is the reference power at distance dj, n is the path
loss exponent (typically ranging from 2.0 to 4.0 for indoor
environments), and X, represents Shadowing.

For a legitimate Access Point operating in a stable environ-
ment, the shadowing term X, follows a zero-mean Gaussian
(Normal) distribution X, ~ N(0,02). This distribution
results from the Central Limit Theorem applied to the sum
of many random multipath reflections caused by walls, fur-
niture, and movement. Consequently, the probability density
function (PDF) of a legitimate signal is symmetric and bell-
shaped.

The fundamental premise of this framework is that a Type
2 Adaptive Signal Clone introduces specific non-Gaussian
distortions into X :

o Impulsive Noise Artifacts: Attack tools utilizing

packet injection often transmit in high-intensity bursts
to force client de-authentication or to overwhelm the
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channel during the handshake window. This introduces
"impulsive" noise that creates sudden, transient spikes
in the RSSI stream, which differ from the smooth varia-
tions of natural environmental fading.

« Leptokurtic Distributions: The presence of these ar-
tificial bursts causes the signal distribution to become
Leptokurtic (heavy-tailed). While the attacker may cal-
ibrate the device to match the mean RSSI (u) of the
target, the "shape" of the probability density function
changes, exhibiting thicker tails due to the injection
artifacts.

C. MATHEMATICAL FORMALIZATION OF FEATURES

To capture these physical anomalies, the system extracts a
feature vector x from a sliding temporal window W =
{r1,72,...,7} of raw RSSI samples. Table [2| defines the
mathematical notation used throughout this derivation.

TABLE 2: Mathematical Notations and Definitions. These
symbols define the statistical moments used to construct the
feature vector x, mapping raw signal data to the kernel space.

Symbol  Definition
w Sliding temporal window of size w
i Individual RSSI sample at time ¢
“w Mean RSSI (First Moment)
o Standard Deviation (Second Moment)
Sk Skewness (Third Standardized Moment)
Ky Excess Kurtosis (Fourth Standardized Moment)

Ryoc RSSI Rate of Change
d(x) Kernel mapping function to Hilbert space

1) Skewness (Sk)

Skewness quantifies the asymmetry of the signal distribution.
A legitimate AP typically exhibits a symmetric distribution
(Sr = 0). However, attackers often use directional antennas
(Yagi or Panel) to boost range. If the antenna is not perfectly
aligned, or if the attacker is in motion, the signal strength
biases in one direction, creating a non-symmetric tail.

1 w 3

52— (ri — )
15w 1 _02)3? @
(w 21:1(701 1) )

S =

2) Kurtosis (K,)
Kurtosis serves as the primary discriminator for detecting
packet injection. It measures the "tailedness" of the distri-
bution.
Ku _ i Zzuzl(ri - ,u)4 S - 3 (3)
(i D (ri = N)2)

The value 3 is subtracted to calculate Excess Kurtosis, nor-
malizing the result against a standard Normal distribution.
A value deviating significantly from O indicates the presence
of outliers consistent with artificial manipulation rather than
natural fading.
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3) RSSI Rate of Change (R, o)

To capture the rapid signal injections characteristic of packet
flooding, the system calculates the magnitude of the first-
order difference of the RSSI stream:

|R7‘ac| = |rt - rt71| (4)

High values of | R,.,.| indicate artificial signal jumps or non-
physical displacement effects rarely seen in natural pedes-
trian fading, where path loss changes gradually over time.

Table B summarizes the distinct roles of these features
within the detection logic.

TABLE 3: Feature Sensitivity Analysis. Each feature targets
a specific anomaly type; Mean RSSI establishes the physi-
cal context, while Kurtosis and Skewness identify the non-
Gaussian artifacts characteristic of signal injection tools.

Feature Physical Mean- Detection Function
ing
Mean RSSI (1) Distance / Path  Contextual Anchor: Defines
Loss the valid "Normal" zone. Out-
liers indicate impossible prox-
imity.
Std. Dev. (o) Signal Volatility Stability Check: High vari-

ance indicates active jamming
or unstable hardware.
Primary Discriminator:
Detects impulsive  noise.
High Kurtosis correlates with
packet injection.

Kaurtosis (K3,) Packet Burstiness

Skewness (S%) Distribution Hardware Artifact: Detects
Symmetry asymmetry caused by direc-

tional amplification.
Rate of Change  Signal Velocity Injection Detector: Identifies

(Rroc) impossible signal jumps (>

10 dBm/ms).

D. DEFINING "REAL-TIME" FOR EDGE DETECTION
A critical requirement for any Out-of-Band security system is
the ability to detect threats in real-time. However, statistical
analysis introduces a necessary latency: the system must
collect w samples to compute a valid distribution.

This paper defines "Real-Time" in the specific context of
Pre-Association Security as:

Tinference < Tscanfwindow < Tuserfconnection (5)

The critical metric is not the data collection time
(Tscan_window), but the Inference Latency (7ijference)- The
scanning window operates continuously in the background.
When a user attempts to connect (Zyser connection), the system
must have a verdict ready. As long as the algorithmic process-
ing (Tinference) 18 negligible (milliseconds) compared to the
human reaction time of selecting a network, the system can
preemptively alert the user. WiMapper minimizes Tixference tO
ensure the decision logic never becomes the bottleneck.

IV. PROPOSED METHODOLOGY: THE WIMAPPER
FRAMEWORK

The WiMapper framework implements a hybrid detection
engine designed to optimize the limited computational cycles
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FIGURE 1: WiMapper System Architecture. The cyclical detection pipeline: The Perception Layer accumulates raw RSSI
into a rolling buffer (w = 15). Upon window saturation, Track A executes a deterministic O(1) whitelist check. If the
SSID/BSSID pair is valid, Track B triggers the kernel-based OC-SVM to analyze higher-order statistical moments. This hybrid
"Admit-then-Verify" approach ensures computationally expensive operations are only performed on ambiguous signals.

available on Resource-Constrained Edge Devices (RCEDs).
As illustrated in Fig. [T} the system architecture is organized
into four logical stages or "Zones" to streamline the detection
pipeline:

e Zone 1 (RF Environment): Represents the physical
threat landscape containing both legitimate APs and
Type 1/Type 2 attackers.

e Zone 2 (Edge Hardware): Handles the raw signal
ingestion via the promiscuous interface.

o Zone 3 (Hybrid Engine): The core computational layer
containing the Track A (Whitelist) and Track B (OC-
SVM) logic.

o Zone 4 (Verdict & Action): The final decision layer
responsible for outputting the security status and man-
aging the quarantine protocol.

By decoupling the computationally inexpensive task of
identity verification (Track A) from the intensive task of sig-
nal integrity analysis (Track B), the architecture ensures that
heavy kernel operations are reserved strictly for ambiguous
or high-risk signals. This "Restrictive Admission Control"
pipeline minimizes the device’s active duty cycle, contribut-
ing to battery longevity while maintaining high diagnostic
precision.

A. DATA ACQUISITION AND ADAPTIVE
PREPROCESSING

The data flow begins in Zone 2 at the Data Acquisition
Interface, where the radio operates in promiscuous mode.
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Unlike standard network drivers, which discard frames not
destined for the host MAC address, the WiMapper sensor
intercepts all IEEE 802.11 management frames, specifically
Beacon and Probe Response frames.

To handle the high-velocity stream of RF data without
overflowing the limited SRAM, the system employs a circu-
lar buffer architecture. This buffer acts as a stabilizing queue,
decoupling the jittery arrival rate of wireless packets from the
deterministic clock cycle of the inference engine.

1) Circular Buffer Management

The management of this data stream is formalized in Algo-
rithm [T} The algorithm ensures that only cryptographically
valid frames (those with intact Frame Check Sequences)
are ingested. To prevent memory fragmentation—a critical
issue in embedded systems—the buffer uses static memory
allocation with an overwriting policy that prioritizes the most
recent temporal window.

B. FEATURE ENGINEERING AND STATISTICAL
STANDARDIZATION

Once the temporal buffer B; contains a full window of valid
samples, the system transitions to the Feature Engineering
phase. The primary challenge is mitigating the stochastic
variance of the wireless channel to produce a feature vector
x stable enough for classification.
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Algorithm 1 Adaptive Rolling Window Data Ingestion. This
process filters physical layer corruption and stabilizes the
input stream into fixed-size temporal windows suitable for
statistical analysis.

1: Input: Raw RF Stream Spp, Window Size w

2: Output: Temporal Buffer 13,

3: Globals: Static Ring Buffer R of size w, Head Pointer p
4. while Radio Active do

5: fraw < ReadFrame(Sgr)

6: // Stage 1: Physical Layer Filtering

7: if CheckFCS( f;-qww) == FAIL then

8: continue > Discard corrupted packets
9: end if

10 // Stage 2: Extraction

11: r < ExtractRSSI( frqw)

12: idmac < ExtractBSSID(frqu )

13: idssia « ExtractSSID( frquw)

14: // Stage 3: Buffer Injection

15: Rlp] + {r, idmac, idssid, timestamp }

16: p+ (p+1) (mod w)

17: /I Check Window Saturation

18: if p == 0 OR BufferFullFlag then

19: B; < Linearize(R)
20: Trigger FeatureExtraction(13;)
21: end if

22: end while

1) The Stability Plateau: Justification for w = 15

Determining the optimal window size w involves a trade-
off between detection latency and statistical stability. While
empirical analysis (detailed in Section [VI) indicates that
raw detection accuracy exhibits a local maximum at lower
window sizes (w = 6), this region corresponds to the "white
noise" dominance zone where frame-to-frame variance is
high. Relying on such short windows increases the risk of
false positives due to transient environmental noise.

To ensure robust operation, the system utilizes a window
size of w = 15. This value aligns with the global minimum of
the Allan Deviation (7, ), representing a "Stability Plateau"
where the noise floor is minimized before random walk drift
begins to dominate. This selection trades a marginal theoret-
ical gain in sensitivity for significantly improved operational
stability, keeping the total data collection time under 1.5
seconds.

2) Z-Score Standardization

The One-Class SVM relies on Euclidean distance in the
kernel space. If features are not scaled, variables with larger
magnitudes (such as Variance) dominate those with smaller
ranges (such as Skewness), biasing the decision boundary.
The system applies real-time Z-score standardization:

Ty — Ntrain (6)

Zi =
Otrain
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Here, pitrqin and oipqin are pre-computed constants stored
in flash memory during the calibration phase, avoiding the
computational cost of recalculating global statistics on the
fly. The complete extraction logic is detailed in Algorithm 2}

Algorithm 2 Statistical Feature Extraction. The logic trans-
forms raw RSSI samples into a standardized feature vector z,
calculating higher-order moments to capture signal shape.

1: Input: Temporal Buffer B;, Calibration Stats (ticar, Teat)
2: Output: Normalized Feature Vector z

3: // Compute Raw Moments (First Pass)

4 u+0

5: fori < 1tow do

6: w4 p+ Beli].rssi

7: end for

8w pu/w

9: // Compute Higher Order Moments (Second Pass)

10: sum_sq < 0, sum_cu < 0, sum_qgd < 0

: fori < 1towdo

dif f < By[i].rssi — p
sum_sq < sum_sq + (dif f)?
sum_cu < sum_cu + (dif f)?
sum_qd < sum_qd + (dif f)*
: end for

© 0 y/sum_sq/w

0 Sy + (sum_cu/w)/(o)?

Ky ((sum_gd/w)/ (o)) - 3

: Ryoe ¢ Bi[w].rssi — By[w — 1].rssi
: // Construct and Standardize

DX [,0, Sk, Ky, Rroc)

: for j < 1to5do

2lj] — (<[] — preatli])/ocatl]
: end for

. return z

—_ o e = e
o S A A i

> Excess Kurtosis

RN NN NN =
SR ON =S ©

C. TRACK A: DETERMINISTIC IDENTITY VERIFICATION
Track A functions as a highly efficient deterministic gate-
keeper (O(1)). It is designed to instantly reject "Type 1"
Naive Impersonators who replicate an SSID but fail to clone
the underlying BSSID. This process uses a deterministic
whitelist W, 4p, implemented as a hash map linking trusted
SSIDs to their authorized BSSIDs.

Because hashing operations are hardware-accelerated on
many microcontrollers, this check incurs minimal computa-
tional overhead. Only signals that pass Track A—meaning
they successfully claim to be a trusted device—are forwarded
to Track B for deep analysis.

D. TRACK B: STATISTICAL SIGNAL INTEGRITY
(OC-SVIM)

Track B addresses the "Type 2" Adaptive Signal Clone. In
this scenario, the identifiers are correct, but the hardware

generating the signal is alien. To detect this, the system relies
on the One-Class Support Vector Machine (OC-SVM).
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Unlike standard classification algorithms that require la-
beled "Attack” data (which is often unavailable or evolving),
the OC-SVM is a semi-supervised algorithm. It learns a
decision boundary that envelopes the "Normal" region of the
feature space. Any observation falling outside this envelope
is flagged as an anomaly.

1) The Primal and Dual Formulations

The objective of the OC-SVM is to find a hypersphere or
hyperplane in a high-dimensional feature space ®(x) that
separates the majority of the training data from the origin.
The primal optimization problem is defined as:

L, o 1 &
1 LN .
min o+ ;5 p %

subject to (w - ®(x;)) > p— & and & > 0.

Here, v € (0,1] is the parameter controlling the upper
bound on the fraction of training errors (outliers) the model
tolerates. WiMapper sets v = 0.01, enforcing a strict policy
that treats the outermost 1% of training data as potential
edge-case anomalies.

Since the feature space ®(x) is potentially infinite-
dimensional when using RBF, the problem is solved in its
Dual Form using Lagrange multipliers o;:

o1
min 5 ZaiajK(xi,xj) 8)
J
subjectto 0 < o < - and > o = 1.

2) The RBF Kernel

Linear decision boundaries fail to capture the complex re-
lationships between Kurtosis and Mean RSSI. WiMapper
utilizes the Radial Basis Function (RBF) kernel:

K (xi,%;) = exp (—]lx; — x;]1%) ©)

The parameter vy controls the curvature of the decision bound-
ary. Algorithm [3| outlines the offline training procedure used
to generate the Support Vectors.

E. HYBRID LOGIC INTEGRATION
Representing the core processing of Zone 3, the final deci-
sion logic combines the deterministic certainty of Track A
with the probabilistic rigor of Track B. Algorithm [] details
this hybrid execution flow. By prioritizing the lightweight
check, the system minimizes the duty cycle of the heavier
OC-SVM inference.

The decision function for the OC-SVM inference phase is
defined piecewise:

Nsv
D(z) = sgn <Z o K(svi,z) — p) (10)
i=1

If D(z) = —1, the signal falls outside the learned normal
distribution and is flagged as a clone.

8

Algorithm 3 Offline Training Procedure. This process gener-
ates the Support Vectors (SV) and coefficients («) that define
the decision boundary, which are then compressed for edge
deployment.

. Input: Training Dataset X,.q;y,, Params (v, )
: Output: Support Vectors SV, Coefficients «, Offset p
. // Kernel Matrix Computation

K <+ ComputeGramMatrix(X4,.qin, RBF, )

. // Quadratic Programming Solver

a < SolveQP(DualForm(K ), Constraints(v/))
. // Extract Support Vectors

: SV(—{Q?Z'|041'>0}

: p + ComputeOffset(SV, a, K)

. // Model Compression for Edge

: Model < Quantize(SV, «)

: return Model

—_— =
N = O

Algorithm 4 Hybrid Inference Logic. The decision flow pri-
oritizes the O(1) whitelist check; the computationally heavier
O(Ngy ) kernel analysis is invoked only for signals that pass
the initial identity verification.

1: Input: Feature vector z, Identifiers {S, M}, Whitelist
W, Model Q2
: Output: Threat Verdict V
: // Phase 1: Track A (Deterministic)
. if S ¢ W.keys() then
return ROGUE_SSID
end if
if M ¢ WIS] then
return EVIL_TWIN_NAIVE
: end if
: // Phase 2: Track B (Probabilistic)
: score < 0
. for i + 1 to Q.num_support_vectors do
k < exp(—Q.7y - [|Q.50[i] — z||?)
score + score + (Q.afi] - k)
: end for
. score < score — §).p
. if score < 0 then
return ADAPTIVE_CLONE
: else
return SAFE
: end if

[ Y N T S o Wy o G GG U NGy
— S © ® QWU A LN = O

V. EXPERIMENTAL SETUP

To evaluate the performance and operational feasibility of
WiMapper, a comprehensive simulation environment was
established. This section details the dataset characteristics,
the mathematical protocols used to synthesize sophisticated
attack signatures, and the cross-validation methodology em-
ployed to ensure statistical significance.

VOLUME x, 2025
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A. DATASET CHARACTERISTICS AND
PREPROCESSING

The evaluation relied on the HCXY Wi-Fi fingerprinting
dataset, a component of the SODIndoorLoc collection. This
dataset was selected because it provides a high-density col-
lection of 450,194 multi-floor indoor RSSI measurements,
capturing the complex multipath fading and shadowing ef-
fects inherent in modern building architectures.

Unlike simple outdoor datasets where signal propagation
follows a predictable line-of-sight model, the HCXY dataset
includes variance caused by wall attenuation, human move-
ment, and device heterogeneity. This environmental variance
is critical for training the model to distinguish between
benign fluctuations and the artificial distortions introduced
by an attacker.

1) Preprocessing Pipeline

Prior to feature extraction, the raw RSSI stream underwent
a cleaning process designed to match the capabilities of a
low-power edge device. Missing values were imputed using
forward-filling to maintain temporal continuity. The data
was then segmented into rolling windows of size w = 15,
consistent with the stability analysis defined in Section[[V]

B. SYNTHETIC ATTACK INJECTION PROTOCOL

A major challenge in wireless security research is the lack
of public datasets containing labeled data for active Evil
Twin attacks. Conducting live cyberattacks in public venues
presents legal and ethical barriers. Consequently, this study
employed a Synthetic Injection Protocol.

This protocol mathematically perturbed legitimate signals
to create novel attack signatures. By controlling the magni-
tude of the perturbation, the simulation modeled attackers
with varying levels of hardware sophistication.

1) Track A Injection: Identity Spoofing

To validate the deterministic whitelist, violations were in-
jected into 3% of the test samples:

« Naive Impersonators (2%): A legitimate SSID is
broadcast, but the MAC address is replaced with a
random hex string, simulating a standard smartphone
hotspot attack.

o Rogue SSIDs (1%): Both the SSID and MAC are
replaced, simulating a new, unauthorized network ap-
pearing in the scan window.

2) Track B Injection: Adaptive Signal Cloning

Validating the OC-SVM required simulating an attacker who
successfully spoofed the identifiers (passing Track A) but
utilized alien hardware. The perturbed signal P,,,om (t) was
generated via a linear transformation of the normal signal
P norm(t):

Panom(t) = (Pnorm(t) : kv) + ko (11)
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where k, is a variance scaling factor representing antenna
gain mismatch, and k, is an additive offset representing
Transmit (Tx) power deviation.

To simulate an "Adaptive" attacker attempting to blend in,
the parameters were controlled by a perturbation magnitude
§ €10,1].

ky, =14 (6-U(0.1,0.3)) (12)

ko = 6-U(—8,8) (13)

Here, U represents a uniform random distribution. This for-
mulation ensured that the anomalies mimicked the physics
of hardware differences rather than simple white noise. A
higher § represented a clumsy attacker with poorly calibrated
hardware, while a low d represented a sophisticated attacker
closely matching the target’s signal characteristics.

Figure [2] visualizes the temporal distribution of these in-
jected anomalies. The scatter plot reveals that attacks are
not continuous streams but sporadic "bursts" of activity,
interspersed with varying baseline noise. This confirms that
the simulation accurately models a dynamic, non-stationary
environment where attacks are transient events rather than
continuous states.

C. MODEL CONFIGURATION AND HYPERPARAMETERS
The hyperparameters for the WiMapper OC-SVM were
tuned using a Grid Search over a subset of clean training
data. The objective was to maximize the retention of normal
samples while strictly bounding the decision envelope. The
optimal parameters identified are listed in Table[d]

TABLE 4: Simulation Parameters and Model Configuration.
The selection of v = 0.01 enforces a strict boundary, treating
the outermost 1% of training data as potential anomalies to
minimize False Negatives.

Category Parameter Value / Description
Dataset Source HCXY (SODIndoorLoc)
Window Size (w) 15 samples (= 1.5 sec)
WiMapper  Kernel Radial Basis Function (RBF)
(OC-SVM)  Nuisance (v) 0.01 (1% Outlier Tolerance)
Gamma (y) 0.1 (Decision Boundary Curva-
ture)
Baselines Isolation Forest Contamination=0.05,
Trees=100
Autoencoder Latent Dim=8, Epochs=50
Injection Track A Rate 3% (Naive Attacks)

Track B Rate
Perturbation (6)

2% (Cloning Attacks)
Varied [0.0, 1.0] for robustness
test

D. VALIDATION METHODOLOGY

To guarantee the statistical validity of the results, the evalu-
ation employed a 10-Fold Stratified Cross-Validation (CV)
strategy. The master dataset was partitioned such that the
class distribution (Normal vs. Attack) remained consistent
across all folds. All reported performance metrics represent

9
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FIGURE 2: Temporal Analysis of Attack Signatures. The scatter plot differentiates ’Evil Twin’ bursts (Purple, Avg -69 dBm)
and ’Rogue SSIDs’ (Orange, Avg -47 dBm) from the ’Normal’ baseline. Attacks manifest as high-variance, transient clusters
(Duration=1 sample) rather than continuous streams, validating the necessity of the w = 15 sliding window to capture sporadic

injection events without smoothing them out.

the mean value p aggregated over 10 independent simulation
runs.

1) Feature Orthogonality Check
Before training, the orthogonality of the selected features was

verified to ensure they provided non-redundant diagnostic in-
formation. Figure 3] presents the Feature Correlation Matrix.

10

Mean RSS!
RSSI Std. Dev. -
RSSI RoC -

RSSI Skewness

RSSI Kurtosis - -0.04

' | | |
Mean RSS|I  RSSIStd. Dev. RSSIRoC  RSSISkewness RSS! Kurtosis

FIGURE 3: Feature Orthogonality Analysis. The low cor-
relation coefficients between the first moment (Mean RSSI)
and higher-order moments (Kurtosis: -0.04, Skewness: -0.20)
confirm that the ’Shape’ statistics are statistically indepen-
dent. This orthogonality ensures that the RBF kernel receives
unique diagnostic information not captured by simple sig-
nal strength, preventing multicollinearity issues (Max VIF:
1.17).

10

To strictly quantify this independence, a Variance Infla-
tion Factor (VIF) analysis was conducted. The maximum
VIF observed was 1.17 (for Mean RSSI), which is signif-
icantly below the critical threshold of 5.0. This mathemat-
ically confirmed that the feature set did not suffer from
problematic multicollinearity.

The distributional separation capability of these features is
further illustrated in Figure 4]

Figure 14: D of Input Features (Normal vs. Anomalous)

i

Mear RSS\ RSS! Std. Dev. sl rac RSS! Skewness RSS! Kurtosi

Standardized Feature Value (Z-Score)

FIGURE 4: Feature Distribution Analysis (Log Scale).
While Mean RSSI shows overlap, the *Shape’ statistics ex-
hibit massive separation. The 90th percentile of Kurtosis
for Anomalies is 15.00 compared to just 1.82 for Normal
traffic, yielding a separation distance of 13.17. This confirms
that impulsive noise from packet injection is the primary
discriminator for the OC-SVM.

VOLUME x, 2025
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E. HARDWARE FEASIBILITY BENCHMARKING

A critical aspect of this study was validating the feasibility
of the algorithm on Resource-Constrained Edge Devices
(RCEDs). To achieve this without relying on specific vendor
hardware which may become obsolete, the study utilized a
hardware feasibility benchmark.

The methodology measured the inference latency and
memory footprint on a standard host environment to establish
the relative computational complexity (O-notation) and the
absolute memory structure size.

« Latency Projection: The reported inference time (0.25
ms) represents the algorithmic execution time. The
O(Ns,) complexity of the SVM ensures that the op-
eration scales linearly. Given that the number of Sup-
port Vectors (INg,) is sparse (typically < 10% of
training data), the total cycle count remains within the
millisecond-range budget of a standard MCU.

o Memory Footprint: The size of the trained model is
determined by storing the support vectors and dual
coefficients. This is a fixed storage requirement. The
measured 190 KB footprint directly validated that the
model fits within the 320 KB SRAM limit common to
the target hardware class.

This methodology provides a "Safety Certificate," proving
that the algorithm is mathematically lightweight enough for
the edge, regardless of the specific chip selected for deploy-
ment.

VI. RESULTS AND PERFORMANCE ANALYSIS

The WiMapper framework underwent a rigorous evaluation
utilizing the synthetic injection protocol described in Section
[V] The analysis focused on dissecting the physical validity of
the detection logic and the operational stability of the system.
All results presented here represent the aggregated mean u
and standard deviation o across ten independent stratified
cross-validation runs, ensuring the findings are statistically
robust.

A. DIAGNOSTIC ACCURACY AND ARCHITECTURE
COMPARISON

The primary objective of the ablation study was to quantify
the performance gain achieved by the kernel-based hybrid
architecture compared to traditional lightweight baselines.
Table 5] summarizes the key performance indicators.

The data reveals that WiMapper achieves a Pareto-optimal
state. It delivers the highest F1-Score (0.827 £ 0.004) and
Area Under the ROC Curve (0.96), effectively balancing
Precision and Recall. In contrast, the Hybrid Isolation For-
est—while competitive on accuracy—yields a lower F1-
Score (0.802), indicating reduced sensitivity to subtle "Type
2" cloning attacks. The Autoencoder underperformed in this
domain (F'1 = 0.746), suggesting that the "reconstruction er-
ror" metric is less sensitive to the specific distributional tails
introduced by packet injection than the geometric boundary
of an SVM.
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To visualize the impact of the hybrid approach, Figure [3]
compares standalone models against the integrated system.
While standalone statistical models struggle to handle the
multi-modal nature of the threat landscape (Naive + Adap-
tive), the hybrid architecture successfully filters the noise,
boosting the overall detection rate.

The integrated performance is further visualized in Figure
[l where the OC-SVM based WiMapper consistently outper-
forms other hybrid architectures across all key metrics.

This diagnostic superiority is further detailed in the Confu-
sion Matrices (Figure[7). WiMapper consistently achieves the
highest True Positive count (mean 1652.3) while maintaining
a False Positive rate comparable to the most conservative
baselines.

B. STATISTICAL SIGNIFICANCE AND RELIABILITY

To ensure the observed performance advantage was not a
statistical artifact, the separability of the classes was ana-
lyzed using Receiver Operating Characteristic (ROC) and
Precision-Recall (PR) curves.

As shown in Figure [§] (Left), the WiMapper curve (Blue)
maintains the highest True Positive Rate across all decision
thresholds, achieving an AUC of 0.96. More critically, the
Precision-Recall analysis (Figure [8] Right) demonstrates an
Average Precision (AP) of 0.86. In security contexts, high
precision at high recall is paramount to prevent "alarm fa-
tigue," where users ignore warnings due to frequent false
positives.

Quantitatively, a statistical validation was performed using
the tests summarized in Table [} A Friedman Chi-Squared
test confirmed global significance across the models (y? =
21.52,p < 0.001). A post-hoc Wilcoxon Signed-Rank test
comparing WiMapper against the closest competitor (Hybrid
Isolation Forest) yielded a p-value of 0.002, rejecting the
null hypothesis. This confirmed that the RBF kernel offers
a statistically significant improvement over linear isolation
methods.

C. FEATURE PHYSICS AND BEHAVIORAL ANALYSIS

A critical requirement for security systems is explainability.
To validate the theoretical assertions made in Section [[TI} the
decision logic was audited using SHAP (SHapley Additive
exPlanations).

Figure [9] presents the global feature importance. As hy-
pothesized in Table [3] Mean RSSI appears as the dominant
predictor, acting as the Contextual Anchor for the model.
This aligns with physical reality: signal strength provides
the baseline context for feasibility. However, for detecting
"Adaptive Clones" that match the target’s power level, the
higher-order moments play the decisive role. Kurtosis (K,)
acts as the Primary Discriminator, identifying the heavy
tails caused by packet injection.

1) The Geometric Decision Boundary
The effectiveness of the RBF kernel is validated by the PCA
projection of the decision function (Figure [I0). Notably, the

11
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TABLE 5: Comparative Performance Metrics (Mean + Std. Dev. over 10 Runs). WiMapper achieves the highest F1-Score and
MCC, indicating superior handling of the imbalanced dataset compared to linear methods like Isolation Forest.

Architecture Acc. F1-Score MCC AUC AP
WiMapper (Proposed) 0.985 + 0.001  0.827 +0.004  0.820 = 0.005 0.96 0.86
Hybrid (Iso. Forest) 0.984 +0.001  0.802 £0.005 0.802+£0.006 094 0.80
Hybrid (GMM) 0.978 £0.008 0.763 £0.052  0.763 £ 0.055 0.94  0.80
Hybrid (Autoencoder) 0.976 £ 0.005 0.746 £ 0.040 0.741 £0.042  0.93 0.80
1.2+
1.0 4=oe —
e .
- 081 — — =
e
< ——
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0.0 T T T T T T
Accuracy Precision Recall F1 Mcc Auc
Metric
3 Wwhitelist [ Autoencoder [ Isolation Forest [ GMM 1 OC-SVM

FIGURE 5: Standalone Component Performance Analysis. The deterministic Whitelist (Track A) achieves perfect Precision
(1.000) but is limited by a Recall of 0.656, failing to detect novel spoofing attacks. Conversely, standalone statistical models
struggle significantly on the mixed dataset, with the OC-SVM achieving a low F1-Score of 0.234 and Isolation Forest at 0.100.
This disparity confirms that neither module is viable in isolation, necessitating the hybrid * Admit-then-Verify’ architecture.

TABLE 6: Statistical Significance Analysis (N=10 Folds).
The low p-values (< 0.05) mathematically confirm that
WiMapper’s performance gains are not due to random
chance.

Test Pair Test p-value Result
Global Friedman x2 2.5 x 10~*  Significant
WiMapper vs. IF Wilcoxon 0.002 Reject Null

first two principal components capture only 48.8% of the
total feature variance. This low retention rate confirms that
the separation between legitimate signals and clones is intrin-
sically non-linear and relies heavily on higher-dimensional
interactions between Kurtosis and Skewness that linear mod-
els fail to capture. It must be noted that this 2D projection
accounts for only 48.8% of the total feature variance. Con-
sequently, Figure[TI0[serves as a conservative lower-bound il-
lustration; the discriminative power of higher-order moments
like Kurtosis resides largely in the remaining 51.2% of the
variance not visible in this projection. Despite this visualiza-
tion loss, the OC-SVM forms a "Tight Envelope" around the
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normal data (v = 0.01), with anomalous samples projecting
far outside the boundary (mean decision score ~ —23.26),
ensuring robust rejection of high-variance attacks.

D. SENSITIVITY AND STABILITY ANALYSIS

For an edge device, stability is as important as accuracy. The
system must not oscillate between "Safe" and "Unsafe" states
due to transient noise. Figure [TT]illustrates the impact of the
window size w on detection performance.

While the sensitivity analysis indicates a performance peak
at w = 6, selecting this window size carries operational risks.
Short windows are highly susceptible to "white noise" jitter,
potentially triggering false alarms on benign interference. To
scientifically validate the selection of w = 15, an Allan
Deviation test was conducted (Figure [I2)).

The analysis reveals that the noise floor reaches a global
minimum at 7 ~ 17. This point represents the Optimal
Averaging Time (7,,;), where white noise is minimized
before random walk drift begins to introduce instability. Con-
sequently, w = 15 was selected to align with this physical
stability plateau, prioritizing consistent operation over the

VOLUME x, 2025
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FIGURE 6: Hybrid Architecture Comparison. The proposed WiMapper (Blue) outperforms the Hybrid Isolation Forest
(Light Grey) and Hybrid GMM (Grey). The RBF kernel’s ability to map non-linear anomalies allows WiMapper to achieve
an F1-Score of 0.827 compared to 0.802 for the Isolation Forest. Statistical testing confirms this improvement is significant

(Wilcoxon p ~ 0.0019).
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FIGURE 7: Confusion Matrix Analysis (Mean of 10 Folds). WiMapper (Left) demonstrates robust detection, identifying a
mean of 1652.3 True Positives (Attackers) while limiting False Positives to 283.8. In contrast, the GMM-based hybrid (Center)
leaked 586.6 False Negatives, confirming that Gaussian assumptions fail to capture the heavy-tailed distributions of adaptive

clones.

raw sensitivity of smaller windows.

Robustness against signal degradation was also tested
(Figure[T3). Even under severe signal perturbation (6 = 1.0),
where the attacker’s hardware deviates significantly from the
baseline, the F1-Score remained above 0.73. This "graceful
degradation” is critical for deployment in dynamic environ-
ments where line-of-sight is not guaranteed.

E. QUALITATIVE EVENT DETECTION

To verify the system’s operational utility, the discrete detec-
tion events generated during the simulation were analyzed.
Table [7] presents a log of specific events detected by the
WiMapper engine. These single-sample bursts correspond

VOLUME x, 2025

precisely to the pre-association management frames dis-
cussed in Section[l] validating the system’s ability to intercept
threats before handshake completion. The system success-
fully identified distinct "Evil Twin" instances lasting only
a single sample window, validating the real-time capability
defined in Section [Tl

VII. FIELD SENSITIVITY AND OPERATIONAL
FEASIBILITY

While simulation allows for the precise injection of synthetic
attacks, deploying edge security systems introduces the chal-
lenge of environmental variability. This section analyzes the
system’s behavior under "Domain Shift" conditions and pro-

13
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FIGURE 8: Receiver Operating Characteristic (ROC) and Precision-Recall (PR) Analysis. (Left) WiMapper achieves
an AUC of 0.956, dominating the competitor space. (Right) The Average Precision (AP) of 0.863 confirms that the system
maintains high trust even at high recall rates, minimizing ’alarm fatigue’ for end-users compared to the Hybrid GMM

(AP=0.80).
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FIGURE 9: SHAP Explainer Analysis. The dot plot reveals
the decision logic: Mean RSSI (Top) establishes the physical
context (Imp 8.59), while Kurtosis (Imp 7.00) acts as the
primary discriminator. High Kurtosis values (Red dots) yield
a strongly negative SHAP value (= —19.3), pushing the
model towards an ’Anomaly’ verdict and identifying the
impulsive artifacts of packet injection.

TABLE 7: Log of Detected Anomaly Events. The system
successfully identifies short-duration attacks (1 sample win-
dow), confirming its ability to operate in real-time against
transient threats.

Event ID  Attack Type Duration (Samples)  Avg RSSI
2 Rogue SSID 1 -47 dBm

4 Adaptive Clone 1 -69 dBm

6  Adaptive Clone 1 -47 dBm

20  Adaptive Clone 1 -71 dBm

24 Rogue SSID 1 -69 dBm

vides a rigorous theoretical complexity analysis to defend its
feasibility on battery-powered Resource-Constrained Edge
Devices (RCEDs).

A. DOMAIN SENSITIVITY: THE FAIL-CLOSED BEHAVIOR
To evaluate the boundary integrity of the WiMapper model, a
field test was conducted using a pre-trained model calibrated
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Principal Component 1 (28.1%)

FIGURE 10: PCA Projection of the ’Fail-Closed’ Decision
Boundary. The OC-SVM (RBF Kernel) learns a tight, non-
linear envelope around legitimate traffic (Blue). Adaptive
clones (Red) project significantly outside this boundary with
a mean decision score of —23.26, confirming the model’s
ability to reject distributional anomalies. Note that this 2D
projection captures only 48.8% of variance; the separation is
even more pronounced in the full 5D hyperspace.

on the indoor HCXY dataset. This model was then deployed
against a live dataset collected from a distinct outdoor en-
vironment. The field log captured 343 signal vectors from
mixed residential and public networks. Crucially, the outdoor
environment lacked the complex multipath fading (n ~ 3.5)
present in the indoor training data, exhibiting instead a line-
of-sight propagation characteristic (n =~ 2.0).

The results, presented in Table[8] reveal a strict operational
behavior: the system flagged 100% of the field samples as
anomalies.

In standard classification tasks, a 100% rejection rate
typically indicates generalization failure. However, in the
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FIGURE 11: Window Size (w) Sensitivity. While raw sen-
sitivity peaks at w = 6 (F1=0.838), this region corre-
sponds to high-frequency noise. The system utilizes w =
15 (F1=0.819), aligning with the Allan Deviation stability
plateau (Figure [12), to prioritize operational stability over
negligible accuracy gains.
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FIGURE 12: Metrological Stability Proof (Allan Devia-
tion). The noise floor reaches a global minimum at 7,,; ~ 17
samples. This mathematically validates the selection of win-
dow size w = 15, proving it operates in the stable region
(Pink Dotted Line) where white noise is minimized before
random walk drift introduces instability.

TABLE 8: Domain Shift Analysis (Indoor vs. Outdoor). The
100% rejection rate in the outdoor environment confirms that
the model does not generalize insecurely; it treats unknown
physical environments as hostile until recalibrated.

. Total Predicted Rejection
Environment Samples Anomalies Rate
Indoor (HCXY Test) 9,000 1,652 18.4%
Outdoor (Field) 343 343 100.0%

VOLUME x, 2025

—e— WiMapper (Proposed)
0.78 1 + 15td Dev

F1-Score

0.‘0 0.‘2 0.‘4 0.‘6 0.‘3 1.‘0
Perturbation Level (&)

FIGURE 13: Sensitivity to Attack Sophistication (). De-
tection performance improves as the attack becomes ’nois-
ier’. Against a near-perfect stealthy clone (6 = 0), the model
maintains a baseline F1-Score of 0.697. As the attacker’s
hardware calibration worsens (6 — 1.0), the statistical
anomalies become more pronounced, raising the F1-Score
to 0.738, confirming that the OC-SVM effectively exploits
higher-variance attacks.

context of high-security admission control, this confirms a
Fail-Closed logic. The OC-SVM correctly identified that the
statistical properties of the outdoor signals—specifically the
variance in the Shadowing term X,—Ilay outside the learned
support of the "Normal" distribution.

This behavior ensures that the system does not blindly trust
unknown environments. However, it also highlights that the
model is highly sensitive to the physical environment’s multi-
path characteristics. This necessitates an In-Situ Calibration
phase (discussed in Section to define a new baseline
whenever the sensor is physically relocated.

B. SYSTEM BENCHMARKING: THE PARETO FRONTIER
A central contribution of this framework is resolving the
trade-off between diagnostic accuracy and computational
resource consumption. Figure[T3] visualizes this relationship,
positioning WiMapper against industry-standard baselines.

The analysis confirms that WiMapper achieves Pareto
Optimality. As detailed in Table[9] the framework delivers a
mean F1-Score of 0.827—significantly surpassing the com-
putationally lighter Gaussian Mixture Model (0.763)—while
maintaining an algorithmic inference latency of just 0.25 ms
on the benchmark host.

While the Autoencoder (AE) theoretically offers low la-
tency on vector-optimized CPUs (0.09 ms), its diagnostic
performance (F'1 = 0.746) is inferior for this specific threat
model. Furthermore, the Isolation Forest requires a memory
footprint of 1,050 KB to store the branching tree structures,
exceeding the available SRAM of the target hardware class
(< 320 KB). WiMapper’s 190 KB footprint fits comfortably
within the limits, leaving sufficient headroom for the net-
working stack.
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FIGURE 14: Field Validation (Domain Shift). When de-
ployed in an unseen outdoor environment without retraining,
the model rejects 100% of samples (343/343). This confirms
a critical 'Fail-Closed’ security posture: the kernel correctly
identifies that the outdoor multipath profile differs from the
learned distribution, preventing false confidence in unknown
environments.

TABLE 9: Master System Benchmark. WiMapper achieves
the highest accuracy (F1=0.827) among the low-latency mod-
els. Note that while the Autoencoder is theoretically fast, its
accuracy is lower, and the Isolation Forest requires excessive
memory (1050 KB).

. Latency Size Mean
Model Complexity (ms) (KB) F1
WiMapper Low (O(Nsv)) 0.25 190 0.827
Hybrid (IF) Medium 4.27 1050 0.803
Hybrid (AE) High (O(N?)) 0.09* 8 0.746
Hybrid (GMM) Low 0.27 5 0.763

*Note: AE latency scales poorly on non-vectorized MCU hardware.

C. OPERATIONAL LIFECYCLE: DETECTION AND
RECOVERY
To manage the verdict in Zone 4, a practical edge security
system must define a lifecycle beyond simple detection to
prevent permanent Denial of Service (DoS) in the event of a
False Positive. WiMapper implements a Quarantine Protocol.
Upon a Track B rejection (Verdict: ADAPTIVE_CLONE),
the target BSSID is placed in a temporary Quarantine List
with a Time-To-Live (TTL) of 300 seconds. During this
window, the user is preemptively warned against connection.
Once the TTL expires, the BSSID is removed from quar-
antine, allowing the system to re-sample the environment.
This hysteresis loop ensures that transient environmental
noise (e.g., a large crowd briefly distorting the multipath
profile) does not result in a permanent lockout of legitimate
infrastructure.

D. COMPUTATIONAL COMPLEXITY ANALYSIS
For battery-powered sensor networks, minimizing the CPU
duty cycle is the critical factor for deployment longevity.
Rather than relying on theoretical energy estimations which
vary by hardware, this study analyzes the algorithmic com-
plexity to demonstrate the framework’s suitability.

Table [I0] contrasts the algorithmic requirements of the
evaluated models.

TABLE 10: Computational Complexity Analysis. The OC-
SVM relies on a sparse set of Support Vectors (Ngy),
making it linearly scalable and battery-efficient compared
to the dense matrix operations (O(N?)) required by Neural
Networks.

Time Space Battery
Model Complexity Complexity Risk
WiMapper O(Ngy - d) O(Ngy - d) Low
Hybrid (IF) O(T-NlogN) O(T-N) Medium
Hybrid (AE) O(L - N?) oW) High

Legend: Ngv : Support Vectors, d: Dimensions, T': Trees, L: Layers, W:
Weights.

The Autoencoder relies on dense matrix multiplications
(O(L - N?)). For a simple fully connected layer with 64
neurons, this involves thousands of Floating Point Operations
(FLOPs) per sample. On a microcontroller lacking a dedi-
cated Tensor Accelerator, these operations must be emulated
in software, significantly extending the active wake time of
the processor.

In contrast, the OC-SVM inference logic (WiMapper)
relies solely on the RBF kernel computation against a
set of Support Vectors (Ngy ). The complexity reduces to
O(Ngy - d). Because the model enforces a tight decision
boundary (v = 0.01), the number of support vectors remains
sparse (typically < 10% of training data). This algorithmic
efficiency guarantees a lower computational footprint than
neural network baselines, directly correlating to extended
battery longevity.

VIIl. CONCLUSION AND FUTURE WORK

This paper presented WiMapper, a lightweight detection
framework designed to secure the wireless edge against
identity-based attacks. By shifting focus from resource-
intensive Deep Learning models to a kernel-based One-
Class SVM, the framework successfully resolves the conflict
between high diagnostic accuracy and the strict resource con-
straints of commodity Resource-Constrained Edge Devices
(RCEDs).

A. SUMMARY OF CONTRIBUTIONS
The simulation and field validation yielded three critical
conclusions regarding decentralized wireless security:

1) Statistical Features as Digital Fingerprints:
The extraction of higher-order statistical fea-
tures—specifically Kurtosis and Skewness—provides
a robust method for distinguishing the non-linear signal
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Figure 19: Pareto Efficiency Frontier
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FIGURE 15: Pareto Efficiency Frontier Benchmarking. WiMapper (Blue Bubble) occupies the optimal quadrant, delivering a
mean F1-Score of 0.827 with an inference latency of 0.249 ms and a memory footprint of 190.1 KB. It significantly outperforms
the Hybrid Isolation Forest, which requires 1049.6 KB of memory, validating WiMapper’s suitability for edge devices with

<320 KB SRAM.

distortions of "Signal Cloning" attacks from natural
environmental fading. Analysis confirms that while
Mean RSSI provides the necessary physical context,
the kurtotic "tail" of the signal distribution drives the
robust rejection of anomalies (avg. decision score -
23.26), revealing the impulsive artifacts of packet
injection.

2) Balancing Accuracy and Efficiency: The proposed
Hybrid Architecture achieves a Pareto-optimal bal-
ance. It delivers a mean F1-Score of 0.827—statisti-
cally superior to lightweight Isolation Forests (p =
0.002)—with an algorithmic inference latency of just
0.25 ms and a memory footprint of 190 KB. This effi-
ciency validates the feasibility of deploying advanced
anomaly detection on low-cost microcontrollers with-
out reliance on cloud offloading.

3) Scalable Wireless Defense: By removing the depen-
dency on expensive, centralized WIPS infrastructure,
WiMapper offers a scalable economic alternative. This
allows for the deployment of dense sensor networks in
ad-hoc environments—such as public squares, trans-
port hubs, and small businesses—effectively closing
the Pre-Association Vulnerability where it is most
prevalent.
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B. LIMITATIONS AND FUTURE WORK

While the framework establishes a foundation for edge-native
security, the field validation and theoretical analysis highlight
key areas requiring future research.

1) Adversarial Machine Learning

The current detection logic assumes that attackers priori-
tize mimicking the mean signal strength (Type 2 Adaptive
Clone) but ignore the higher-order statistical moments. A
sophisticated attacker, aware of this defense mechanism,
could employ "Adversarial Noise Shaping." By dynamically
adjusting the packet injection rate and transmission power, an
attacker might shape the shadowing term X, to approximate
a Gaussian distribution (K, ~ 0), thereby evading the OC-
SVM boundary. Future iterations of WiMapper will incor-
porate Adversarial Training, where the model is exposed to
these "shaped" attacks during the calibration phase to harden
the decision boundary.

2) Hardware Proxy vs. Silicon Reality

The latency metrics presented in this study rely on a hardware
feasibility benchmark. While this accurately captures the
linear time complexity (O(Ngy)) and relative efficiency of
the kernel operations, it abstracts away hardware-specific
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constraints inherent to MCU architectures, such as instruc-
tion fetch latency from Flash memory and bus contention.
Consequently, while the algorithmic latency is validated at
0.25 ms, the execution time on specific silicon targets may
vary. Future work will transition to direct silicon validation,
utilizing logical analyzers and physical power profilers to
quantify the precise energy consumption of the inference
loop in a real-world deployment.

3) In-Situ Calibration and Domain Adaptation

The field validation revealed that the pre-trained model ex-
hibits high sensitivity to domain shifts, rejecting 100% of
signals in an unseen outdoor environment due to the lack of
multipath fading. While this confirms the "Fail-Closed" se-
curity posture, it creates an operational bottleneck requiring
manual retraining.

To address this, future work will extend the deployment
lifecycle to include an autonomous In-Situ Calibration Mod-
ule. This mechanism will allow the sensor node to enter a
"Learning Mode" for the first hour of deployment. During
this unsupervised period, the device will sample the local
electromagnetic environment to estimate the specific path
loss exponent (n) and shadowing variance (o) of its loca-
tion. This locally derived baseline will then be used to re-
center the normalization parameters, allowing the system to
adapt to the physical characteristics of the deployment site
without compromising detection rigor.

IX. DATA AVAILABILITY
The research data supporting the findings of this study are
available from the following sources:

1) Public Benchmarks: The HCXY Wi-Fi fingerprinting
dataset utilized for the baseline training is publicly
available as part of the SODIndoorLoc collection (ref-
erenced in Section[V).

2) Reproducibility Artifacts: The complete source code
implementing the WiMapper framework—including
the synthetic anomaly injection functions, the sta-
tistical feature extraction pipeline, and the fixed
random seeds required to reproduce the strati-
fied 10-fold cross-validation splits—has been de-
posited in a public repository to facilitate indepen-
dent verification. These resources are accessible at:
https://github.com/ahkharsha/wimapper-project.

3) Restricted Data: The raw signal logs collected during
the outdoor field validation phase (Section|[VII) contain
real-world MAC addresses and identifiers. To comply
with privacy regulations and ethical guidelines regard-
ing passive monitoring, this specific subset of data is
not publicly available.
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