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. INTRODUCTION

ABSTRACT The confluence of climate change and population growth poses unprecedented challenges
to global food security. Existing smart agriculture solutions often rely on lagging indicators of crop
stress and lack robust mechanisms for verifying sustainable practices. This paper introduces the Quantum-
Enhanced Agri-Ledger (QAL), a framework designed to shift agricultural management from a reactive to
a preemptive paradigm. Its potential is evaluated through a comprehensive simulation study using a highly
complex, multi-variate synthetic dataset. The framework integrates three innovations: (1) a proposed high-
sensitivity Quantum Dot Spectrometry Sensor (QDSS) model for in-situ detection of plant stress volatile
organic compounds (VOCs); (2) a privacy-preserving Federated Learning (FL) model that leverages high-
dimensional sensor data to predict crop health; and (3) a novel blockchain consensus mechanism, Dynamic
Proof-of-Stake with Sustainability Slashing (dPoS-SS), to create an immutable ledger for sustainable
farming actions. Simulation results, aggregated over multiple independent runs, show that the full QAL
model, featuring a feed-forward neural network, achieves a mean stress classification accuracy of 96.71 %
+ 0.47%. While the high-complexity data model narrowed the gap in yield prediction, the QAL model
still demonstrated a lower Root Mean Square Error (RMSE) of 1.31 + 0.20 tons/ha compared to baseline
conventional models. Similarly, the dPoS-SS model suggests substantially higher energy efficiency than
traditional Proof-of-Work systems. The QAL framework is presented as a blueprint for a future generation
of transparent, incentive-driven ecosystems for a sustainable and secure food future.

INDEX TERMS Precision Agriculture, Quantum Dot Sensor, Federated Learning, Blockchain, Preemptive
Intervention, Sustainable Farming, Crop Stress Phenotyping

sensors capable of real-time, molecular-level monitoring and

a secure framework for verifying and incentivizing sustain-

HE agricultural sector is at a critical juncture, tasked
with ensuring global food security for a population

able on-farm practices.

projected to reach 9.7 billion by 2050, a challenge requiring
an estimated 70% increase in food production [1]. This task is
compounded by the escalating pressures of climate volatility,
soil degradation, and water scarcity. In developing nations,
particularly India where agriculture supports over 58% of
the population, these challenges are acutely felt. While vi-
sions for integrating the Internet of Things (IoT), Artificial
Intelligence (AI), and blockchain technology are compelling,
a significant gap persists between concept and field-ready
implementation. This is particularly evident in the need for
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Current smart farming solutions predominantly rely on
sensors that measure bulk environmental properties like tem-
perature (1), humidity (H), and soil macronutrients. These
metrics are often lagging indicators of plant stress; by the
time a measurable change is detected, irreversible physio-
logical damage may have occurred. Plants, however, emit
dynamic profiles of Volatile Organic Compounds (VOCs)
as an early warning of biotic and abiotic stress [2]. The
ability to detect and decode these VOC signatures offers a
crucial window for preemptive intervention, shifting the
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paradigm from reactive damage control to proactive health
management.

To bridge this data gap, we introduce the Quantum-
Enhanced Agri-Ledger (QAL), a multi-layered framework
designed to shift agricultural management from a reactive to
a preemptive paradigm. This paper presents the conceptual
framework and a comprehensive simulation-based validation
of the QAL system. It integrates a theoretical model of a
Quantum Dot Spectrometry Sensor (QDSS) with a simu-
lated privacy-preserving Federated Learning architecture to
explore the potential of this new economic model.

This proactive approach supports progress toward United
Nations Sustainable Development Goal (SDG) 2 (Zero
Hunger) by enabling precise yield forecasting to secure food
supplies. Furthermore, the data-driven optimization of chem-
ical inputs aids in SDG 12 (Responsible Consumption and
Production) by reducing the environmental footprint of in-
dustrial agriculture. The primary contributions are threefold:

1) A Quantum Dot Spectrometry Sensor (QDSS)
Model: A model for a low-cost, field-deployable sen-
sor array is proposed. This model uses specifically
functionalized quantum dots, tuned to the spectral lines
of key stress-related VOCs and soil micronutrients, to
generate high-dimensional data with high sensitivity
and specificity.

2) A Privacy-Preserving Federated Learning Archi-
tecture: A machine learning pipeline is designed to
use the high-dimensional data from the QDSS model
for predicting crop stress and yield. This Federated
Stress-Phenotyping Model (FSPM) is trained using
a Federated Learning (FL) architecture to preserve
data sovereignty, allowing farmers to benefit from
a collectively improved global model without sharing
their sensitive operational data.

3) A Novel Consensus Mechanism for Verifiable Sus-
tainability: A concept called Proof-of-Sustainable-
Practice (PoSP) is introduced, implemented via a
mechanism named Dynamic Proof-of-Stake with
Sustainability Slashing (dPoS-SS). This mechanism
is designed to enable farmers to create immutable
records of sustainable actions, which are then validated
using sensor data and rewarded, creating a direct finan-
cial incentive for sustainability.

This paper is organized as follows: Section II reviews
related work. Section III presents the architecture of the QAL
framework and the basis of the QDSS model. Section IV
details the core algorithms. Section V describes the simula-
tion environment used to evaluate the framework. Section VI
presents and discusses the simulation results, and Section VII
concludes with a summary, a discussion of limitations, and
directions for future research.

Il. RELATED WORK

The QAL framework represents a synthesis of advances in
sensing, distributed intelligence, and decentralized verifica-
tion. This review critically evaluates the current state-of-the-
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art across these domains to pinpoint unresolved limitations
that motivate the design of the integrated QAL architecture.
The following subsections analyze existing work, with com-
parative summaries in Tables 1, 2, and 3.

A. THE SENSING FRONTIER: FROM PROXIES TO
PREEMPTIVE DIAGNOSTICS

The foundation of modern precision agriculture rests on
data acquisition. While the proliferation of IoT devices
[3], [4] and advanced remote sensing techniques like UAV-
based hyperspectral imaging [5] have enabled detailed field-
scale mapping, their utility is fundamentally constrained. As
Mahlein describes [6], many imaging methods detect disease
only after physiological changes are well underway. The
critical gap remains their reliance on lagging indicators.
Whether it is a shift in canopy reflectance or soil moisture, the
signal indicates that stress has already occurred. The frontier
for preemptive action lies in detecting biochemical precur-
sors like VOCs. While electronic-nose technologies have
been explored [7], [8], they often lack the field-deployable
specificity needed to deconvolve complex VOC mixtures into
actionable stress signatures, a limitation the QDSS model is
designed to address.

Recent integrations of UAV-mounted diffraction spec-
troscopy and fiber Bragg grating sensors [9] have advanced
real-time forest health monitoring. While effective for phys-
iological strain and canopy reflectance, our work extends
this domain by targeting specific volatile organic compounds
(VOCs) via quantum dot sensing for pre-symptomatic stress
detection. Furthermore, recent work on reconfigurable holo-
graphic surfaces [10] highlights that hardware impairments
and phase shift errors are inevitable in practical wireless
links. This reinforces the QAL strategy of performing heavy
data processing at the Edge Layer, minimizing the reliance
on pristine uplink conditions for raw data transmission.

B. THE INTELLIGENCE LAYER: FROM CENTRALIZED
MODELS TO DATA-RICH FEDERATED LEARNING

The application of Al in agriculture is well-documented
[11], but most deep learning models rely on centralized
data, creating significant privacy and data ownership risks
for farmers. Federated Learning (FL) [12], [13] provides a
powerful architectural solution to this problem. However,
the performance of any Al, federated or not, is capped by
its input data. The unresolved limitation of current FL
applications in agriculture is not the architecture but the
data quality. Even advanced multi-modal networks [14] are
constrained by data from conventional sensors that capture
proxies of plant health, not the underlying biochemical state.
The FSPM aims to address this data-quality gap by pairing
the FL architecture with a high-fidelity data source.

C. THE VERIFICATION BACKBONE: FROM PASSIVE
LEDGERS TO ACTIVE INCENTIVE ENGINES

Blockchain technology has been proposed to enhance agri-
food traceability [15]-[17]. The evolution from energy-
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intensive Proof-of-Work (PoW) [18] to efficient Proof-of-
Stake (PoS) [19] has made it more sustainable. However,
the primary unresolved challenge is the "oracle problem"
[20]: reliably and securely feeding real-world data onto
the blockchain. Existing systems often function as passive
ledgers reliant on manual or centralized data entry, which
is vulnerable to error or manipulation. They record claims
about practices but cannot autonomously verify them. The
dPoS-SS mechanism is conceptualized to address this by
integrating cryptographically signed sensor data directly into
the consensus process, transforming the blockchain from a
passive recorder into an active verification engine.

Beyond basic PoS consensus, recent research has focused
on incentive-compatible designs for resource-constrained
and UAV-assisted networks. Tang et al. [21] propose a PoS
blockchain for secured data collection in UAV-assisted 10T,
where a multi-agent reinforcement learning framework op-
timizes stake investment and profit sharing. Complementary
surveys on blockchain-enabled UAV systems [22] and com-
parative analyses of consensus mechanisms [23] further high-
light the importance of carefully designing staking, rewards,
and slashing rules to ensure both security and economic
sustainability.

To contextualize the QAL framework within the broader
ecosystem of existing agricultural technologies, Table 4
benchmarks the proposed system against current commercial
UAV and IoT platforms. This comparison highlights the
structural shift from reactive monitoring to the preemptive,
molecular-level diagnostics proposed in this work.

As illustrated, while commercial platforms excel in spatial
mapping or bulk soil monitoring, they predominantly rely on
lagging indicators. The QAL framework distinguishes itself
by targeting the biochemical precursors of stress, enabling
intervention before visible symptoms manifest.

D. SUMMARY OF FRAMEWORK CONTRIBUTIONS

As detailed in Tables 1, 2, and 3, the QAL framework is
designed to address fundamental limitations across sensing,
intelligence, and verification domains. The integrated ap-
proach aims to shift agriculture from reactive to proactive
monitoring, pursue superior Al performance while main-
taining data privacy, and create a blockchain system that
helps mitigate the oracle problem for on-farm verification.
This synergy establishes a paradigm for sustainable precision
agriculture whose potential is explored in this work.

lll. SYSTEM ARCHITECTURE

The QAL framework is a multi-layered, decentralized system
designed to integrate field data with a robust, transparent,
and incentive-driven digital ecosystem. The modularity of
the framework is visualized in the four-layer architecture
depicted in Figure 1. While Figure 1 illustrates the high-
level architecture, the specific operational logic is defined
mathematically: the sensing physics follows the modified
Stern-Volmer model (Eq. 1), the decision logic is governed
by the Federated Learning protocol detailed in Algorithm
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2, and the verification rules are enforced by the dPoS-SS
Consensus in Algorithm 3.

A. PERCEPTION LAYER

This foundational layer is responsible for in-situ data acqui-
sition and forms the core of the framework’s IoT network.
It is comprised of a distributed network of autonomous,
low-power IoT sensing nodes that provide a comprehensive,
real-time view of plant health and environmental conditions.
A key component of this layer is the QDSS Array, which
is designed to detect specific VOCs and soil micronutri-
ents. This provides a high-dimensional spectral fingerprint
of plant stress, enabling early detection of stressors before
visual symptoms appear. Complementing this, the IoT nodes
are also equipped with traditional environmental sensors to
measure bulk parameters such as soil moisture, temperature,
humidity, and soil macronutrients (NPK), providing crucial
environmental context.

B. EDGE LAYER

The Edge Layer serves as the on-farm computational gate-
way, a crucial component of the IoT architecture that enables
edge computing. Acting as an intermediary between the
sensor nodes and the cloud, its primary functions are real-
time data pre-processing and privacy preservation. The Edge
Gateway Device aggregates high-volume data streams from
the Perception Layer. By performing initial cleaning, normal-
ization, compression and encryption locally, it reduces the
amount of data transmitted to the cloud, lowering bandwidth
costs and latency. Most importantly, this device hosts the
local client for the FLL model, ensuring that raw, sensitive
farm data never leaves the premises.

C. PLATFORM LAYER

The Platform Layer is the cloud-based backend that orches-
trates the system’s analytical and decision-making processes.
The FL Server manages the core machine learning pipeline.
It sends a global model to Edge Gateways for local training
and aggregates only the model updates from participating
farms to refine the global model. To ensure the integrity of
the blockchain, the system relies on External Oracle Services,
which provide independent data from sources like weather
APIs and satellite imagery for validating on-chain claims.

D. BLOCKCHAIN LAYER

This decentralized, immutable ledger forms the backbone of
the QAL framework. The QAL Blockchain Network utilizes
the PoSP consensus mechanism, implemented as dPoS-SS, to
immutably record verified sustainable actions. These actions
trigger Smart Contracts which automatically issue tokenized
rewards to farmers upon successful validation. A decen-
tralized network of Validators verifies claims by comparing
submitted data against trusted external oracle data, achieving
consensus through a trust-weighted voting process that is
both energy-efficient and secure. As an illustrative funding
model, the token economy could potentially be supported
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Table 1: Comparative Analysis of Sensing Technologies in Agriculture

Feature Hyperspectral Imaging | IoT Environmental E-Nose Systems [7] QAL QDSS (Proposed)
[5] Sensors [3]
Detection Timing Post-symptom Post-symptom Limited Pre-symptom Design  Goal:  Pre-

symptom detection

Diagnostic Precision Spatial mapping Indirect indicators Low specificity Design Goal: Molecular-
level fingerprinting
Field Deployment UAV-based Stationary nodes Limited field use Design Goal: Low-cost,
edge-ready
Validation Status / Lim- High cost, requires Lagging indicator, sub- Prone to drift and envi- Simulated model, not
itations clear atmospheric | ject to placement error ronmental interference physically validated
conditions

Table 2: Comparative Analysis of Al Systems in Precision Agriculture

Feature Centralized Deep Federated Learning Multi-modal Networks QAL FSPM (Proposed)
Learning [11] [12] [14]
Data Privacy High-risk Privacy-preserving Centralized risk Privacy-by-design archi-

tecture

Model Performance

High accuracy but data-
limited

Good performance, con-
strained by setting

Advanced fusion but

proxy-data limited

Simulated  Potential:
Superior accuracy via
molecular data

Scalability Requires central infras- Distributed computation High computational de- Edge-optimized design
tructure mands
Validation Status / Lim- Requires central data Complex aggregation, Computationally Performance is
itations ownership, high trust potential for non-IID expensive, centralized contingent on
data issues hypothetical sensor
data
Table 3: Comparative Analysis of Blockchain Systems for Agricultural Verification
Feature Supply Chain Trace- Standard PoS with Or- PoW with Oracles [18] QAL dPoS-SS
ability [15] acles [19] (Proposed)
Functionality Passive ledger Energy-efficient consen- Secure but high energy Active incentive engine
sus cost
Trust Model Trust in data entry Oracle-dependent Trust in hash rate Integrated trust via sen-

SOrs

Incentive Structure

Transaction fees

Staking rewards

Mining rewards

Sustainability rewards

Validation Status / Lim- Vulnerable to erroneous Centralization risk in Extremely high energy Conceptual, dependent
itations data entry, dependent | oracle providers consumption on reliable sensor data
on input fidelity as oracles
Table 4: Comparison of QAL with Commercial and IoT Agricultural Platforms
Feature Commercial Multispectral UAV Commercial IoT Soil Sensors Proposed QAL Framework
(e.g., DJI P4 / Plant-O-Meter (e.g., Monnit Wireless [25])
[24])
Detection Basis Canopy Reflectance | Bulk Dielectric Permittivity (Mois- | Specific Biochemicals (VOCs)
(NDVI/NDRE) ture)
Timing Reactive (Visual/Spectral change) Reactive (Moisture deficit) Preemptive (Metabolic shift)
Data Ownership Often Vendor-Cloud Locked Centralized Cloud Dashboard Federated (On-premise)
Verification Brand Trust None Blockchain Consensus

by supply chain premiums for certified sustainable produce
and the tokenization of verified carbon credits, though a full
economic validation is outside the scope of this technical
study.

E. THE QUANTUM DOT SPECTROMETRY SENSOR
(QDSS) MODEL
The core sensing innovation of the framework is the QDSS.
A quantum dot (QD) is a semiconductor nanocrystal whose
excitons are confined in all three spatial dimensions. This
property, known as quantum confinement, allows the dot’s
emission energy and corresponding color to be precisely
tuned by controlling its physical size. This tunability is the
foundation for creating an array of sensors, each highly spe-
cific to the spectral absorption of different target molecules.
The sensor’s operating principle, shown in Figure 2, relies
on fluorescence quenching. Each QD has a baseline fluores-
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cence efficiency, or quantum yield. When target molecules,
such as VOCs, bind to the functionalized surface of a QD,
they introduce new pathways for non-radiative energy de-
cay. This process effectively "quenches" or dims the dot’s
fluorescence. The degree of quenching is proportional to the
concentration of the target analyte, providing a measurable
signal.

While this study relies on simulation, the sensor model
is informed by candidate materials reported in the litera-
ture. Specifically, sol-gel encapsulation of polymer-coated
ZnS/CdSe quantum dots has been demonstrated to effectively
detect organic vapors through fluorescence quenching [26].
Similarly, core-shell CdSe/ZnS nanocrystals have shown
high sensitivity in electrochemical sensor applications for
phenolic compounds [27], providing a material basis for the
proposed array design.

For the simulation, the total quenching effect in a multi-
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Figure 1: An overview of the QAL four-layer architecture. The diagram illustrates the data pipeline, starting with in-situ data
capture at the Perception Layer. Data is then pre-processed at the Edge Layer to preserve privacy. The cloud-based Platform
Layer aggregates insights using Federated Learning, and the Blockchain Layer provides an immutable ledger for verifying and
incentivizing sustainable practices.

STEP 1 - VOC STEP 2 - SELECTIVE STEP 3 - STEP 4 - SPECTRAL
EMISSION BINDING FLUORESCENCE FINGERPRINT
QUENCHING ANALYSIS
b
B / %
m ° L Y "’/ =0 MW\M
ANNe)
HEALTHY PLANT VOCs BIND TO QDs INTENSITY SPECTRAL DATA
EMITS VOCs DECREASE OUTPUT

Figure 2: Diagram illustrating the four-step working principle of the QDSS. (1) A stressed plant emits specific VOCs. (2)
VOCs selectively bind to the functionalized surface of the quantum dots. (3) This binding process increases non-radiative

decay, causing the fluorescence to quench’. (4) The specific pattern of quenching across the array creates a unique spectral
fingerprint for analysis.
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analyte environment is modeled using a modified Stern-
Volmer equation (Eq. 1). This provides a mathematical basis
for generating a unique "spectral fingerprint" from a mixture
of quenching analytes ([Q;]).

F N
FO = (1 + ; KSV,i[Qi]) o))

It is critical, however, to acknowledge the limitations of
this model. While the standard Stern-Volmer equation (Eq. 1)
is a linear first-order approximation, our simulation utilizes
a hyperbolic tangent function (see Eq. 8 in Section V) to
qualitatively capture the non-linear saturation and inner-filter
effects often observed in complex VOC mixtures, ensuring
the model does not assume infinite sensitivity. Furthermore,
creating a robust, field-deployable QDSS presents several
challenges:

« Long-term Stability: QDs can suffer from degrada-
tion and photobleaching when exposed to UV light
and harsh environmental conditions, requiring advanced
encapsulation techniques to ensure a stable signal over
a growing season.

« Environmental Interference: The fluorescence of QDs
is highly sensitive to temperature and humidity. A
physical sensor would require integrated thermal man-
agement and calibration algorithms to decorrelate the
environmental effects from the target VOC signal.

o Cross-Sensitivity and Specificity: While QDs can be
functionalized for specific analytes, achieving perfect
specificity in a complex blend of dozens of VOCs is
a major challenge. Cross-reactivity could lead to am-
biguous signals requiring sophisticated deconvolution
algorithms.

« Power Consumption and Scalability: For wide-scale
agricultural deployment, the sensor nodes must be ultra-
low-power. Furthermore, mass-producing quantum dots
with consistent size, shape, and surface chemistry to en-
sure uniform performance is a significant manufacturing
hurdle.

Table 5 outlines the proposed composition of the sensor
array used in the model.

Table 5: Proposed QDSS Array Composition and Target
Analytes.

QD Type  Core/Shell Material ~ Target Analyte (VOC)  Associated Stressor

Dot A CdSe/ZnS Jasmonic Acid Biotic Stress (Pests)

Dot B InP/ZnS Salicylic Acid Biotic Stress (Pathogen)

Dot C Graphene QD [B-caryophyllene Abiotic Stress (Drought)

Dot D Carbon Dot Ethylene General Stress / Ripening
DotE ZnSe QD Dissolved Zn?" ions Soil Nutrient (Micronutrient)
Dot F CdTe/CdS Abscisic Acid (ABA) Abiotic Stress (Drought)

Dot G Si QD Methyl Salicylate Systemic Acquired Resistance
Dot H AgInS2/ZnS Dissolved Fe3 ijons Soil Nutrient (Micronutrient)

By creating a theoretical array with dozens of such dots,
it is possible to simulate the generation of a unique "spectral
fingerprint" for complex mixtures of VOCs and soil ions, as
shown in Figure 3. This unique signature provides the rich
data needed for the advanced classification models.
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Figure 3: Simulated spectral fingerprint from the QDSS array
model. The distinct spectral shift for stressed plants (dashed
red line) versus healthy plants (solid green line) highlights the
model’s ability to generate unique, high-dimensional data for
stress classification.

IV. METHODOLOGY

A. DATA ACQUISITION AND CALIBRATION

The first step in the methodology is processing the raw
data from the QDSS model into a clean, normalized format.
Algorithm 1 outlines this process. To handle anomalous
readings from sensor noise, outliers are first identified and
replaced using a standard Z-score test. To account for slow
sensor drift over time, a dynamic baseline is maintained using
an Exponentially Weighted Moving Average (EWMA). The
formula for the EWMA, which uses the outlier-filtered sensor
data (Syqlia,t), is shown in Eq. 2. This approach ensures
that the baseline is not corrupted by transient spikes. The
final steps involve calculating the fluorescence quenching and
normalizing the vector.

B = aSyaiiar + (1 —a)Biy )

B. FEDERATED STRESS-PHENOTYPING MODEL
(FSPM)

The core of the system’s predictive capability lies in the
FSPM, which is trained using FL to protect farmer privacy,
as detailed in Algorithm 2. The model is implemented as
a feed-forward neural network with two hidden layers, uti-
lizing Batch Normalization and Dropout for regularization.
A composite loss function is proposed (Eq. 3), which dy-
namically balances the objectives of yield prediction and
stress classification using a heuristic weighting term, ;.
During local training on each client device, model weights
(W) are iteratively adjusted to reduce error using the Adam
optimization algorithm. For this study, the weighting term \;
was held constant at 0.5 to give equal importance to both the
yield prediction and stress classification tasks.

L
p
£total = )‘tﬁyield + (1 - )‘t)‘cstress + m ZZ; HVVZ H% (3)
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Algorithm 1 Enhanced QDSS Data Calibration and Normal-
ization
1: Input: Raw fluorescence vector ;4. ¢, historical mean
Lhists std dev op;s¢, EWMA baseline B, _ 1, learning rate
«
2: Output: Normalized stress vector .Sy, o, updated base-
line B;
3: Svalid — Sraw,t
4: for each reading s; € Syqu,+ do
5: Zi < (8i = [hist,i)/ Thist,i
6: if |Z;| > 3 then
7
8
9

Svatiali] < Bi-1]1]
: By < aSyaiia + (1 — oz)Bt_l
: Squenched — Bt - Svulid
10: for i = 1 to length(Sy4:4) do

11: if Squenched[i] < 0 then
12: Squenched M ~—0
Squ,enched

13: Snorm ISquenchedll2 . .
14: Update pip;st, Onist With new valid readings
15: return S, , By

Algorithm 2 Federated Learning for Yield Prediction (Ex-
panded)

1: Server Executes:

2: Initialize global model weights Wéo)

3: foreachround ¢t =0,1,...,7 — 1 do

4: m + max(C - K, 1)

5 S; < (random subset of m clients)

6: for each client k£ € S; in parallel do
7: WétH) < ClientUpdate(k, Wg))
g W((;t+1) ey %Wétﬂ)

9

: return WéT)

10: procedure CLIENTUPDATE(k, W¢)

11: W +— Wqg

12: B <+ (split local data Dy, into batches)
13: for each local epoch i from 1 to F do
14: for batch b € B do

15: W<« W — UVﬁlocal(W; b)
16: return IV to server

C. PROOF-OF-SUSTAINABLE-PRACTICE (POSP)
CONSENSUS

To cryptographically verify and reward sustainable actions,
the PoSP consensus mechanism is proposed. The process,
detailed in Algorithm 3, begins when a farmer submits a
transaction 7, which contains the farmer’s signed node 1D,
Ny . If the claim is rejected, or if a validator is found to be
consistently voting against the honest majority, a portion of
their staked assets can be "slashed" (i.e., forfeited), creating
a strong disincentive for malicious behavior. The validation
function, Fyaiidate (Eq. 5), checks for correlation between
on-chain and oracle data. The trust score of each validator is

VOLUME x, 2025

dynamically adjusted after each vote based on their accuracy
(Eq. 4), ensuring that honest validators gain influence over
time.

Tv,t+1 = (1 - 'Y)Tv,t + 'YA'U (4)
Foalidate = (5(Dchm‘n; Doracle) < e)A(VerifySignature(Nf)>
%)

The distance metric d is a crucial component whose imple-
mentation depends on the data types being compared, such as
Intersection over Union (IoU) for imagery or Mean Squared
Error (MSE) for time-series data. Consensus is achieved by a
trust-weighted majority, making the system more robust.

Algorithm 3 dPoS-SS Consensus Mechanism with Trust-
Weighted Voting

: Input: Transaction 7 (contains farmer node ID Ny)
. Propose block B containing 7~
: Select random validator set VV
s Thotal < Z'UEV T,
Tapproved +0
: for each validator v € V in parallel do
Fetch Dchain and Doracle
vote < ]:Ualidate(Ta Dchaina Do’racle)
if vote == 1 then
Tapproved < Tapproved + T,

. 2
. if Tapproved > §Eotal then

R A A ol S

[
=

12: Append B to blockchain; Mint R;open to Ny
13: else
14: Reject B and potentially enact slashing penalties.

D. ADDITIONAL PROPOSED ALGORITHMS FOR
DECISION SUPPORT

To illustrate the practical, downstream applications that the
core predictive model is designed to enable, the following
decision-support algorithms are also proposed. The QAL
framework proposes several other algorithms to form a com-
plete decision support system. While their detailed perfor-
mance evaluation is outside the scope of this paper, their
design is outlined here to illustrate the framework’s full
potential.

a: Anomaly Detection with Temporal Persistence

Algorithm 4 serves as an intelligent early warning mecha-
nism. It uses the standard Mahalanobis distance to generate
an anomaly score. To prevent false positives, the algorithm
incorporates temporal persistence, triggering an alert only if
the score remains high for a predefined confirmation window.

b: Multi-Variate Dynamic Nutrient Recommendation

To account for complex nutrient interactions, Algorithm
5 proposes a multi-variate optimization model. It aims to
compute a cost-effective fertilizer blend that addresses the
primary deficiency while preventing secondary imbalances,
also integrating weather data to prevent runoff.
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Algorithm 4 Anomaly Detection with Temporal Persistence

1: Input: Normalized stress vector S}, orm, historical mean
Lhists coOvariance matrix Xp;e, dynamic threshold
Threshold;

2: Persistent State: Anomaly counter Cgyomaty, Confir-
mation window Weop, £irm

3: Output: Contextual alert (Severity, Duration)

4: Calculate Mahalanobis distance to quantify deviation
from the healthy baseline:

0 < \/(Snorm - ,uhist)TZ}:ilst(Snorm - ,uhist) (6)

: if § > Threshold,; then
Canomaly <~ Canomaly +1

Oanomaly 0
. if Canomaly > Wconfirm then
10: Severity <— CalculateSeverity (0, Threshold;)
11: Trigger alert: "Persistent stress event detected. Sever-
ity: Severity, Duration: Cyy,0maiy hours.”

5
6:
7: else
8
9

12: return ¢, Severity

Algorithm 5 Multi-Variate Dynamic Nutrient Recommenda-
tion

1: Input: Stress class prediction Pk.ess, s0il data vector
Ssoil» Crop Growth Stage G, Weather Forecast Fiyeqther
2: Constants: Optimal nutrient vector Noptimar, Nutrient
Interaction Matrix M;y,, Fertilizer Cost vector Cery,
Fertilizer Nutrient Matrix M e,
: Output: Optimized fertilizer application plan Ry,
: Ncurrent — deCOde(Ssoil)
Ndeficit — Noptimal - Ncurrent
- if maX(NdefiCT;t) < 0 then
return "No nutrient application needed."
o if Fyeather-rainProbability > 0.8 then
return "Recommendation delayed due to impending
heavy rain."

10: Let x be the vector of fertilizer amounts to apply.
11: Minimize: CfertTX
12: Subject to:
1) Ncurrent + Mfertx Z Noptimal
2) (Mznt (Ncurrent + Mfertx))i
toxicity_threshold,

IN

13: Rpian < SolveOptimization(x)
14: return R4y,

c: Adaptive Anomaly Thresholding

Algorithm 6 proposes a dynamic threshold that adapts to crop
growth stage and recent environmental context. By using a
rolling statistical window and a volatility index, it aims to
maximize detection accuracy.

Algorithm 6 Adaptive Anomaly Thresholding

1: Input: Recent history of anomaly scores A indow, CTOp
growth stage G, recent environmental data F.,;,,dow

2: Output: Highly contextual, adjusted threshold

Threshold;

KA window S mean(Awindow)

1 O Awindow € Std(Awindow)

: Thresholdyqse < M A window + 30A,wind0w

if G; == "Flowering" or G; == "Fruiting" then
Factorg;qge < 0.85

else
Factorg;qg4e < 1.0

R A A

10: VolatilityIndex —
std( Ewindow-humidity)

11: Factor,oqatitity < 1 — (0.2 x tanh(VolatilityIndex))

12: The final threshold is adjusted by both biological and
environmental factors:

std( Eyindow-temp)  +

Threshold; <— Thresholdyqse X Factor,ge X Factor,oqtirity
(7

13: return Threshold;

V. EXPERIMENTAL SETUP

To evaluate the performance of the QAL framework, a
comprehensive simulation was designed and executed. The
environment was built in Python 3.9, utilizing PyTorch for
the federated neural network models, Scikit-learn for base-
line models and data processing, and SimPy for discrete-
event simulation of the blockchain network. The evaluation
hinges on a synthetic dataset generated to model complex
agricultural scenarios under controlled conditions.

A. IOT NETWORK AND SENSOR DATA SIMULATION

To provide realistic inputs for the framework’s algorithms,
the underlying IoT network and conventional sensor data
streams were modeled.

« Conventional Sensor Data: The simulation generated
time-series data for traditional sensors (temperature,
humidity, and soil moisture). To provide richer temporal
context for the model, this conventional data stream was
expanded to a total of 12 features. This included si-
nusoidal functions to reflect diurnal cycles (sine/cosine
transformations of the hour) and time-lagged values
(e.g., from 6 and 12 hours prior) of the primary envi-
ronmental variables.

o Network Characteristics: The communication net-
work between sensor nodes and the edge gateway was
also modeled. Based on typical Wi-Fi-based agricultural
deployments, the simulation assumed an average data
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packet success rate of 98.7% and a network latency
modeled by a log-normal distribution with a mean of
52ms.

B. SYNTHETIC DATASET GENERATION FOR QAL

A synthetic dataset representing approximately 20,000 data
points per run was generated to provide a robust basis for
model training and validation. The protocol was designed to
create a challenging and realistic simulation environment far
exceeding simple Gaussian noise.

o Stress Event Injection: Biotic (Pest) and abiotic
(Drought, Nutrient Deficiency) stress events were in-
troduced following a Bernoulli distribution, with event
durations modeled to create a gradual, non-linear onset
and recovery profile.

« Complex VOC Signal Modeling: To simulate a real-
istic and challenging scenario, the final signal .S;(¢) for
each of the 96 QDSS sensor bands was modeled as a
superposition of multiple components as described by
Eq. 8. This included a common "general stress" signal,
G(c,t), for all non-healthy states, and weaker, class-
specific signals, V;(c, t), with overlapping spectral fea-
tures to differentiate between stressors. Signal strength
was modeled as a non-linear function of stress duration
to reflect biological reality. Crucially, a highly com-
plex and structured noise component, Neompies (0, 1),
was introduced by layering multiple effects: baseline
noise, signal drift, periodic interference, random high-
magnitude spikes, and sensor saturation effects sim-
ulated via a hyperbolic tangent function. This design
forces the model to learn subtle, complex, and co-
occurring patterns rather than simple, idealized features.

S;(t) = tanh(B;+G(c, di)+Vi(e, di)+Neomplex (0, 1))

®)
where B; is the baseline signal, c is the stress class, and
d; is the duration of the stress event.

o Ground-Truth Labels: Final crop yield (in tons/ha)
was calculated using a baseline potential, which was
then penalized based on the type and duration of sim-
ulated stress events, with added Gaussian noise to
simulate natural variability in crop response. It is ac-
knowledged that the current synthetic dataset focuses
on physicochemical VOC responses. It does not yet
capture complex biological feedback loops, such as evo-
lutionary pest resistance or crop-specific growth stages.
Future iterations of the simulator will incorporate these
biological dynamics to further validate the model’s gen-
eralization capabilities.

C. FEDERATED DATA PARTITIONING AND FEATURE
ENGINEERING

To simulate a real-world federated scenario with distinct
farm datasets, the generated data was partitioned among 20
simulated clients. The overall dataset was first split into
an 80% training set and a 20% hold-out test set using a
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standard random split. The 80% training portion was then
evenly distributed among the clients.

A crucial step of the methodology was client-side feature
engineering. Before local training, each client autonomously
processed its time-series data to generate an exhaustive set of
temporal features. This process expanded the feature space
significantly by transforming the raw sensor readings into a
rich representation of trends and volatility. The final input
vector size of 108 features is derived from the 96 discrete
spectral bands of the QDSS array combined with the 12
engineered features from conventional sensors. The specific
features generated are detailed in Table 6. All feature scaling
(StandardScaler) was performed based on parameters derived
only from the training data partitions to prevent data leakage.

Table 6: Details of Client-Side Temporal Feature Engineer-
ing.

Parameters Applied To

Time Windows: 6, 12, 24h
Time Windows: 6, 12, 24h

Feature Type

Base Sensor Channels
Base Sensor Channels

Rolling Mean
Rolling Std Dev

D. MODEL ARCHITECTURE AND FEDERATED
TRAINING PROTOCOL

The FSPM utilized an advanced feed-forward neural net-
work designed for robustness, implemented in PyTorch. The
architecture included an input layer sized to the expanded
feature set, followed by two hidden layers augmented with
Batch Normalization and Dropout to prevent overfitting
and improve generalization. The final model had two output
heads: one for yield prediction (regression) and one for multi-
class stress classification (softmax).

To ensure optimal model configuration, automated hyper-
parameter tuning was employed within the federated context
using the Optuna framework. This process involved sys-
tematically searching for the best-performing combination
of learning rates, dropout rates, and layer sizes by running
multiple, short-duration federated simulations. The hyperpa-
rameter set that yielded the best performance on a validation
set was selected for the final, full-duration training runs. The
search space for this optimization is defined in Table 7.

Table 7: Hyperparameter Search Space for FSPM Tuning.

Hyperparameter Distribution  Range

Learning Rate Log-Uniform  [1 x 107%4,1 x 1072]
Dropout Rate Uniform [0.2,0.5]

Layer 1 Neurons Integer [64, 256]

Layer 2 Neurons Integer [32,128]

The main simulation consisted of 10 independent runs to
ensure statistical validity of the results. In each run, the best-
found hyperparameters were used to train a global model
over 40 communication rounds. In each round, a subset of
clients performed local training for 5 epochs using the Adam

9
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optimizer before their model updates were securely aggre-
gated using the Federated Averaging (FedAvg) algorithm. All
reported results are the mean and standard deviation across
these 10 runs.

E. COMPREHENSIVE ABLATION STUDY

To rigorously evaluate the contributions of both the advanced
data source (QDSS) and the neural network architecture
(FSPM), a comprehensive ablation study was conducted.
This study was organized into two groups, with three distinct
models evaluated in each:

1) Group 1 (Conventional Data Only): This group es-
tablishes performance baselines using only the 12-
dimensional conventional environmental sensor data.
The following models were trained on this limited
dataset:

« Random Forest (RF)
« Support Vector Machine (SVM)
o FSPM (Neural Network)

2) Group 2 (Full Data): This group evaluates the same
three models using the complete, high-dimensional
dataset combining both conventional and QDSS sensor
streams. This setup is designed to isolate the perfor-
mance gains attributable to the richer data.

This two-group approach allows for a robust comparison,
highlighting not only the value of the QDSS data but also
the effectiveness of different machine learning architectures
in interpreting that data. The RF and SVM models, while
implemented with standard parameters for this study, were
included as they represent strong and commonly used bench-
marks for tabular data analysis.

F. BLOCKCHAIN NETWORK SIMULATION

The dPoS-SS consensus mechanism was simulated with a
network of 100 validator nodes and benchmarked against
a PoW network model.

« Network Parameters: The simulation assumed a block
time of 15 seconds, an average transaction size of 250
bytes, and network latency modeled using a log-normal
distribution.

« PoW Benchmark Details: The PoW benchmark was
modeled on the parameters of the pre-merge Ethereum
network (Ethash). Its energy consumption was calcu-
lated based on the model provided by De Vries [18],
which correlates energy use with network hash rate and
revenue.

G. NOISE SENSITIVITY ANALYSIS

To evaluate the robustness of the trained FSPM against real-
world sensor imperfections, a noise sensitivity analysis was
conducted. This analysis began by establishing a baseline
performance on the clean test set (noise ¢ = 0.0). Sub-
sequently, the entire multi-run simulation was repeated at
several noise levels, where Gaussian noise with a system-
atically increasing standard deviation (o) was added to the
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raw sensor data streams before the feature engineering step.
The final aggregated model performance (Mean Accuracy
and Mean RMSE) was recorded at each noise level to assess
the degradation threshold.

VI. RESULTS AND DISCUSSION

The performance of the QAL framework was evaluated
through the comprehensive simulation detailed in Section
V. The analysis focused on the predictive accuracy and
robustness of the FSPM, the efficiency of the blockchain
mechanism, and the potential agricultural impact. All key
performance metrics are reported as mean =+ standard devia-
tion over 10 independent simulation runs to ensure statistical
robustness.

Following the federated hyperparameter tuning process, a
set of optimal parameters was identified for the FSPM. A
representative set of the best-performing hyperparameters is
presented in Table 8. These values were used to configure the
FSPM for the final training and evaluation.

Table 8: Representative Optimal Hyperparameters for the
FSPM.

Hyperparameter  Optimal Value

Learning Rate 3.7 x 1074
Dropout Rate 0.35
Layer 1 Neurons 196
Layer 2 Neurons 115

A. FSPM PERFORMANCE ANALYSIS

1) Yield Prediction and Stress Classification

The FSPM, leveraging the combined conventional and QDSS
data streams, demonstrated strong predictive performance on
the highly complex synthetic dataset. Figure 4 visualizes the
yield prediction performance from a representative simula-
tion run. It contrasts the baseline SVM model trained only on
conventional data—which shows a wide prediction variance
(RMSE = 1.45 tons/ha for this specific run)—with the full
QAL model. The QAL model’s predictions cluster much
more tightly around the line of perfect prediction, achieving
a mean RMSE of 1.31 + 0.20 tons/ha across all runs.

In the domain of stress classification, the model showed
excellent diagnostic precision. The mean confusion matrix,
aggregated over all 10 runs, is presented in Figure 5. The high
values along the diagonal—for instance, ‘1203.6 £+ 106.6°
correct classifications for the *Healthy’ state—confirm the
model’s ability to consistently identify the correct condition.
The overall mean accuracy was a notable 96.71% =+ 0.47%.
The matrix shows that the most common errors are confu-
sions between the different stress types (e.g., Drought being
misclassified as Healthy ‘30.9 £ 6.4° times), an expected
outcome given the intentionally overlapping signal features
in the data model. To further validate this, the mean Receiver
Operating Characteristic (ROC) curves are shown in Figure
6. The high Area Under the Curve (AUC) for all classes
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(mean AUC > 0.996) demonstrates the model’s excellent and
stable ability to distinguish between all states.

2) Comprehensive Ablation Study and Feature Importance
To rigorously evaluate the contributions of both the advanced
data source and the neural network architecture, a compre-
hensive two-group ablation study was conducted. The full
results are presented in Table 9 and visualized in Figure 7.

The study evaluated three different model architectures
(RF, SVM, and FSPM) on both the limited conventional
dataset and the full dataset. As seen in Table 9, when trained
only on conventional data, the traditional machine learning
models (RF and SVM) outperform the FSPM neural network,
achieving classification accuracies of 32.5% and 33.7%, re-
spectively, compared to the FSPM’s 27.3%. This suggests
that for lower-dimensional data, traditional models are highly
effective.

However, when the models are given access to the
full, high-dimensional dataset including QDSS streams, the
FSPM demonstrates its superior capability. Its accuracy dra-
matically increases to 96.7%, surpassing both the RF (66.6%)
and SVM (95.6%) models. This two-group analysis provides
a crucial insight: the high performance of the QAL system is
a result of the synergy between the rich, molecular-level data
from the QDSS and an advanced neural network architecture
adept at interpreting its complexity.

The feature importance analysis, shown in Figure 8, con-
firms the dominant contribution of the novel data source.
The top 20 most predictive features are entirely derived from
the QDSS vector. This result provides strong evidence that
the molecular-level data captured by the QDSS model is the
primary driver of the system’s high diagnostic accuracy.

B. MODEL ROBUSTNESS AND SENSITIVITY ANALYSIS
1) Federated Learning Convergence

The convergence of the FL model, shown in Figure 9,
demonstrates stable and efficient learning. The plot displays
the mean validation accuracy over 10 runs, which shows a
rapid increase during the initial 25-30 communication rounds
before reaching a stable plateau around 96.7%. The narrow
shaded region, representing +1 standard deviation, indicates
low variance between runs and suggests consistent conver-
gence under the simulated ideal network conditions.

2) Noise Sensitivity Analysis

To evaluate the FSPM’s resilience to real-world sensor im-
perfections, a noise sensitivity analysis was conducted. As
illustrated in Figure 10, the model’s performance shows a
clear trend of graceful degradation as sensor noise increases.
Starting from its baseline on clean data (o = 0.0), the stress
classification accuracy (orange dashed line) remains high, at
approximately 96%, up to a noise level of o = 0.10. It then
declines more steeply to approximately 62% at the maximum
tested noise level of o = 0.30. The Yield Prediction RMSE
(blue solid line) shows a corresponding increase in error,
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rising from its baseline of 1.31 tons/ha to a peak of approx-
imately 1.95 tons/ha around a noise level of o = 0.20. The
analysis indicates a notable tolerance for sensor imprecision,
although it underscores the importance of high-quality sensor
fabrication for optimal real-world performance.

C. BLOCKCHAIN PERFORMANCE AND AGRICULTURAL
IMPACT

While the anomaly detection and adaptive thresholding al-
gorithms (Algorithms 4 and 6) performed their auxiliary
roles effectively in preliminary tests, the core viability of the
verification layer depends on the efficiency of its consensus
mechanism. Figure 11 shows the mean performance with
error bars representing variance across 10 runs. The dPoS-SS
mechanism achieves significantly higher transaction through-
put, scaling to 187 4 11 TPS with 100 validators, compared
to the flat performance of PoW. More critically, its energy
consumption is orders of magnitude lower, representing a
98.8% reduction per transaction.

These technical improvements are designed to translate
into tangible agricultural benefits. The illustrative simula-
tion of nutrient management in Figure 12, now driven by
the aggregated model outputs, suggests that the dynamic
recommendations can maintain soil nitrogen in the optimal
zone. While the model without QAL recommendations sees
a steady decline into a stress state, the QAL-driven approach
successfully prevents deficiency and reduces potential fertil-
izer waste over the simulated 60-day period.

D. SECURITY AND ATTACK VECTOR ANALYSIS

Given the decentralized nature of the framework, we analyze
its resilience against key attack vectors:

1) Validator Collusion

The dPoS-SS mechanism increases the economic cost of col-
lusion. By implementing a configurable “Slashing” fraction,
the protocol ensures that validators voting against the oracle-
verified consensus risk forfeiting a portion of their stake.

2) Adversarial Economic Incentives

To counter adversarial economic incentives, the staking and
slashing rules are designed to ensure that the cost of short-
term malicious strategies (e.g., profitable misreporting fol-
lowed by exit) exceeds the potential gains, making long-term
honest participation the rational equilibrium, although a full
game-theoretic analysis is left to future work.

3) Edge Node Forgery

Architecturally, the framework proposes hardware-level sign-
ing (e.g., ECDSA) at the Perception Layer to ensure data
non-repudiation, though this cryptographic primitive is not
explicitly modeled in the current throughput simulation.
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Figure 4: Comparison of simulated yield prediction accuracy from a representative run, plotting predicted vs. actual yield. The
dashed line represents a perfect prediction. (Left) The baseline SVM model trained on conventional data shows significant
prediction error (RMSE = 1.45 tons/ha). (Right) The Full QAL model’s predictions cluster tightly around the line of perfect
prediction, demonstrating a much stronger correlation with the actual yield (RMSE = 1.31 tons/ha). The mean RMSE for the

QAL model across 10 runs was 1.31 + 0.20 tons/ha.

Table 9: Comprehensive Ablation Study Results (Mean =+ Std Dev over 10 runs).

Model Configuration Yield Prediction RMSE (tons/ha)

Stress Classification Accuracy (%)

Group 1: Trained on Conventional Data Only

Random Forest (RF) 1.35+0.22 3254+ 1.6

Support Vector Machine (SVM)  1.45 4+ 0.22 33.7+25

FSPM (Neural Network) 2.44 +£0.24 273+ 1.6
Group 2: Trained on Full Data (Conventional + QDSS)

Random Forest (RF) 1.34 £ 0.22 66.6 £ 11.2

Support Vector Machine (SVM)  1.55 £ 0.23 95.6 £ 0.5

FSPM (QAL Model) 1.31 £ 0.21 96.7 + 0.5

4) Oracle Manipulation

Reliance on a decentralized oracle network is proposed to
mitigate single-point-of-failure risks regarding weather and
satellite verification data.

E. DISCUSSION OF LIMITATIONS

While the simulation results are promising, a critical discus-
sion of the framework’s limitations is essential to contextual-
ize the findings and guide future work.

1) Technical and Methodological Limitations

The primary limitation is the study’s reliance on a synthetic
dataset generated from simplified biological and physical
models. Real-world agricultural environments exhibit com-
plexities and covariances not fully captured in the simula-
tion. The simulation assumes Independent and Identically
Distributed (IID) data partitions. Real-world agricultural data
is highly non-IID. Consequently, the reported accuracy rep-
resents an upper bound under ideal federated conditions.
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Future work will integrate clustered Federated Learning and
meta-learning-based personalization to mitigate performance
degradation across heterogeneous farm environments. Fur-
thermore, the proposed dPoS-SS mechanism, while con-
ceptually sound, requires a more rigorous security analysis
against sophisticated economic and collusion attacks before
deployment. Finally, this work does not include a direct
performance comparison against existing commercial agri-
cultural monitoring systems, which often operate as black
boxes, making such a comparison difficult within a simula-
tion context.

2) Potential Economic Viability
A theoretical cost-benefit analysis frames the potential for
real-world adoption.

« Estimated Costs: The primary cost drivers would be the
fabrication and deployment of the QDSS arrays and the
maintenance of the on-farm edge devices and network
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Figure 5: Mean confusion matrix for FSPM stress classifi-
cation over 10 simulation runs. Each cell displays the mean
prediction count + one standard deviation. The high values
along the diagonal confirm the model’s diagnostic precision,
achieving a mean accuracy of 96.71% =+ 0.47%.
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Figure 6: Mean ROC curves over 10 simulation runs. The
shaded regions represent 1 standard deviation. The high
Area Under the Curve (AUC) for all classes demonstrates the
model’s excellent and stable ability to distinguish between
healthy and various stressed states.

infrastructure. Initial costs could be substantial, repre-
senting a significant barrier for smallholder farmers.

« Potential Gains: The economic benefits could be sig-
nificant. The improved yield prediction error could help
optimize harvesting logistics and forward sales. More
importantly, the ability to maintain optimal nutrient
levels and preemptively identify stress, as illustrated in
the simulations, could prevent catastrophic crop losses
and reduce input waste, offering a high potential return
on investment.
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This preliminary analysis suggests that while the initial
capital expenditure is high, the potential for significant op-
erational savings and risk reduction could make the QAL
framework economically viable, particularly for high-value
crops.

3) Ethical Considerations and Governance

The deployment of such a technology necessitates careful
consideration of its ethical implications.

« Data Sovereignty and Privacy: The use of FL is a
direct response to the critical need for farmer data
sovereignty. It ensures that raw, operational farm data
remains on-premises, preventing exploitation by large
corporations.

« Equitable Access and the Digital Divide: The high po-
tential cost of the system risks creating a digital divide,
where only large, well-capitalized farms can benefit.
To address capital barriers for smallholder farmers, one
potential deployment model is “Farming-as-a-Service”
(FaaS). In this hypothetical scenario, cooperative-owned
QDSS nodes could provide subscription-based insights,
removing the burden of individual asset ownership.

o Decentralized Governance: The QAL network, with
its tokenized rewards, forms a micro-economy. It is
crucial to establish a fair, transparent, and decentralized
governance model to manage network upgrades, resolve
disputes, and ensure that the validator set does not be-
come overly centralized, thereby defeating the purpose
of a decentralized system.

VIl. CONCLUSION AND FUTURE WORK

A. CONCLUSION

This paper introduced the Quantum-Enhanced Agri-Ledger
(QAL), a framework designed to shift agriculture toward a
preemptive management paradigm. While the findings are
based on a theoretical framework and a simulated environ-
ment with a highly complex dataset, they present a strong
blueprint for this paradigm shift. By integrating a novel
QDSS sensor model, a privacy-preserving FL architecture,
and an energy-efficient decentralized ledger, the QAL frame-
work establishes a blueprint for a system that can enhance
productivity, preserve farmer data sovereignty, and directly
incentivize sustainability.

The comprehensive simulations yielded promising results.
The findings suggest that leveraging molecular-level data
from the QDSS model leads to significant improvements in
diagnostic accuracy for crop stress, with the FSPM achiev-
ing a mean accuracy of 96.71%. Furthermore, the dPoS-SS
mechanism was shown to be a viable, energy-efficient alter-
native to traditional consensus protocols, making a secure
verification ledger more feasible for agricultural contexts.
While this work is simulation-based, it presents a compelling
case for this integrated approach, justifying the future re-
search required to translate this blueprint into a field-ready
technology.
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Figure 7: Results of the comprehensive ablation study, visualizing mean performance metrics over 10 runs with error bars
representing +1 standard deviation. The charts contrast Yield Prediction RMSE (lower is better) with Stress Classification
Accuracy (higher is better) for three different models on two different datasets, illustrating the significant accuracy gain achieved
by integrating the QDSS data.
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resentative FSPM training run. The analysis shows the
overwhelming dominance of QDSS-derived features in the
model’s predictive power.

B. FUTURE WORK
Building on the simulation results of this work, future re-
search will focus on transitioning the QAL framework from
model to practice. The immediate next steps are organized
into three key areas:

1y

Physical Prototype Development and Field Valida-
tion: The primary goal is to fabricate and deploy
physical QDSS prototypes. This involves significant
materials science and engineering work to functional-
ize quantum dots and build a robust, low-power sensor
package. Foundational work on a conventional IoT
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Figure 9: Mean Federated Learning model convergence over
10 simulation runs. The shaded region represents 1 stan-
dard deviation. The steady increase in validation accuracy
demonstrates stable and efficient collaborative training.

Yield prediction RMSE (tons/ha)

025

—e— Mean Yield RMSE
~m- Mean Classification Accuracy

accuracy

ss classification

0.00 005 0lo 015 020 025 030
Simulated sensor noise level (o)

Figure 10: Results of the noise sensitivity analysis. The
plot shows the mean degradation of Yield Prediction RMSE
and Stress Classification Accuracy as sensor noise increases.
Shaded regions represent 1 standard deviation over 10 runs.
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SS shows a >98% reduction in energy consumption per 1000 transactions compared to PoW, highlighting its sustainability.
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Figure 12: An illustrative simulation of soil nitrogen manage-
ment over 10 runs. While the baseline scenario (red) shows
depletion, the mean trend for the QAL-driven approach
(green) maintains the nutrient level within the optimal zone.
The shaded region represents 1 standard deviation.

node provides a viable platform for the future integra-
tion of this novel sensor. This phase will involve cal-
ibrating the sensor’s sensitivity against gold-standard
laboratory instruments (e.g., GC-MS) and assessing its
long-term durability.

Model Expansion and Robustness Testing with Real
Data: Once physical prototypes generate real data,
the FSPM will be retrained and validated. Research
will focus on training the model on a wider range of
crops and diverse agro-climatic zones. A key challenge
will be training the model to deconvolve complex, co-
occurring stress signatures (e.g., simultaneous drought
and nutrient deficiency).

2)
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3) Blockchain Testnet Deployment and Economic
Modeling: A plan is in place to deploy the QAL
blockchain on a permissioned testnet with pilot farms.
This will allow for an evaluation of the economic via-
bility and behavioral impact of the token-based incen-
tive system, stress-testing of the dPoS-SS consensus
mechanism, and optimizing the network for real-world
latency and scalability.

DATA AVAILABILITY

This study utilizes a synthetic dataset generated through sim-
ulation. The source code used to generate the dataset, train
the models, and reproduce the results and figures presented
in this paper, together with a representative dataset from one
of the simulation runs, is available at: https://github.com/
ahkharsha/quantum-agri-ledger.
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