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Abstract—Rapid detection of maternal health emergencies—
such as aberrant heart rates, fetal movement anomalies detected
through accelerometer-based fetal kick monitoring, or fall
events—are critical for improving outcomes. This work presents
pregAthl, a Smart loT-Based Maternal Health Monitoring
System that integrates an ESP8266 microcontroller with a
MAX30100 heart-rate/SpO. sensor and dual MPUG6050
accelerometer/gyroscope modules positioned on the abdominal
region and wrist for comprehensive motion analysis to capture
maternal activity patterns and detect fetal movements through
accelerometer-based kick monitoring in real time. Sensor
readings are transmitted via Wi-Fi to a Firebase backend, where
a  cloud-hosted machine-learning model analyzes
sliding-window features to identify potential emergencies and
issues alerts through a Flutter mobile application while
forwarding  live-location  coordinates to  designated
responders—spouse, nearest hospital, and trained volunteers.
The system demonstrates potential for scalable, low-cost
maternal care solutions in resource-constrained environments
through its integrated approach to emergency detection and
notification.
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INTRODUCTION

Every year, thousands of maternal and neonatal deaths
occur due to delayed recognition of obstetric emergencies
such as preterm labor, hypertensive crises, and accidental falls
[1], [2]. Conventional prenatal care relies on periodic clinic
visits and subjective symptom reporting, limiting continuous
assessment of a mother’s condition. Recent advances in the
Internet of Things (1oT) and mobile health (mHealth) offer an
opportunity to bridge this gap by providing real-time
physiological monitoring outside clinical settings [3], [4].

loT devices—particularly low-power microcontrollers
like the ESP8266—can interface with medical-grade sensors
to continuously capture vital signs (e.g., heart rate, oxygen
saturation) and motion metrics (e.g., acceleration, orientation)
including fetal movement activity through accelerometer-
based kick detection [5], [6]. When combined with cloud
computing and mobile applications, such systems enable
automatic detection of anomalies including maternal fall
events, abnormal activity patterns, and fetal movement
irregularities, with immediate notifications reducing response
time. However, many existing solutions focus solely on single
parameters (e.g., heart rate) or lack robust emergency
detection models.
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This paper introduces pregAthl, a prototype maternal
monitoring architecture that fuses multimodal sensor data
from the MAX30100 PPG and dual MPUG050 IMUs for
cardiovascular anomaly detection; applies a lightweight
Logistic Regression classifier in the cloud to detect abnormal
fetal movement patterns through accelerometer-based kick
detection and fall events; and delivers coordinated alerts and
location information to a predefined network of responders—
spouse, nearest hospital, and trained volunteers—uvia a Flutter
mobile app backed by Firebase. By integrating continuous
monitoring, data analytics, and multichannel notifications,
pregAthl aims to enable proactive intervention in resource-
limited settings.

LITERATURE REVIEW

Early efforts in remote maternal monitoring leveraged
single-modality physiological measurements to detect basic
anomalies [5]. Gupta et al. [7] and Ramprabhu et al. [8]
demonstrated that photoplethysmography (PPG)-based heart-
rate tracking, when paired with simple threshold rules, could
alert caregivers to bradycardia or tachycardia events via SMS
or web dashboards. However, these systems lacked motion
sensing to distinguish true emergencies (e.g., syncope or falls)
from routine activity. Pawlak et al. [9] extended this work by
integrating ECG and SpO: sensors into a home cyber-physical
system, applying signal-processing filters to reduce false
alarms, yet still depended on central monitoring stations.
Tabassum et al. [10] explored fetal movement detection using
accelerometer-based kick monitoring and polynomial
regression, achieving high accuracy for fetal wellbeing
assessment—but without addressing other critical events such
as falls or hypotensive episodes. Our approach builds upon
their methodology while integrating comprehensive
emergency detection including fall events and cardiovascular
anomalies.

To broaden situational awareness, subsequent platforms
incorporated multiple sensor types and connectivity options.
Bagwari and Gairola [11] combined pulse, temperature, and
blood-pressure measurements with GSM-based mobile
reporting, showing improved continuity of care but remaining
rule-driven. Segall et al. [12] and Pawelek et al. [13]
investigated patient engagement in personal health record
systems, emphasizing the need for intuitive interfaces that
could display multi-sensor data in real time. Sarhaddi et al. [14]
proposed an loTenabled maternal monitoring system that
fused PPG and motion data, yet still relied on static thresholds
for emergency detection, leading to variable sensitivity in
dynamic home environments.



More recent research has turned to machine-learning
techniques and richer alert frameworks. Aldughayfiq et al. [15]
applied decision-tree classifiers to PPG time-series for
arrhythmia detection, achieving precision improvements over
static rules. Further research by Atzmon et al. [16] introduced
a novel, noninvasive PPG-based sensor for continuous
maternal hemodynamic monitoring; however, their system
was designed specifically for use during delivery in a clinical
setting. This approach, while valuable for intrapartum care,
does not address the need for comprehensive, long-term
monitoring in a home environment where events like falls and
fetal movement anomalies are critical concerns. An approach
by Zhang et al. [17] successfully applied ensemble classifiers
to PPG and accelerometer features for predicting hypotensive
episodes; however, the framework lacked an integrated
emergency alert system for post-prediction response.

In summary, no existing solution simultaneously fuses
multimodal physiological and motion sensing with dual-
purpose accelerometer deployment for both fetal movement
monitoring and fall prevention, leverages machine-learning
prediction in the cloud, and orchestrates multi-recipient,
location-aware notifications. pregAthl fills this gap by
integrating MAX30100 PPG and dual MPU6050 IMU data,
applying a lightweight sliding-window classifier, and issuing
synchronized app-based, SMS, and live-location alerts to
spouses, hospitals, and community volunteers.

METHODOLOGY

The pregAthl architecture (Fig. 1) comprises four
integrated layers—sensing, connectivity, analytics, and
notification—each optimized for low cost, reliability, and
rapid response in resource-limited settings.

I. Sensing Layer

At the edge, a single ESP8266 microcontroller interfaces
with three medical-grade modules: the MAX30100 PPG
sensor positioned on the wrist for photoplethysmography
(heart rate and SpO:) and dual MPU6050 inertial modules for
three-axis acceleration and gyroscope data. The system
employs two MPUGB050 sensors: one positioned on the
abdominal region and another on the wrist. This dual-sensor
approach enables separation of maternal movement from fetal
kick patterns through differential signal processing, where the
wrist sensor captures maternal activity that can be subtracted
from the abdominal sensor readings to isolate fetal movements.

The firmware samples PPG signals at 100 Hz and motion
data from both MPUG6050 sensors at 50 Hz each, while
applying digital low-pass filtering with a cutoff frequency of
5 Hz to reduce noise. For comprehensive motion analysis, we
implement specialized filtering using a 0.5-5 Hz bandpass
filter on the abdominal sensor data to isolate fetal kick patterns
after subtracting maternal activity captured by the wrist sensor,
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while analyzing maternal activity patterns in the 0.1-20 Hz
range to distinguish between normal daily activities and
emergency scenarios, with all readings timestamped for
synchronization.

I1. Connectivity Layer

Filtered sensor readings are batched into 1-second frames
and transmitted via Wi-Fi (IEEE 802.11 b/g/n) to a Firebase
real-time database with AES-256 encryption to ensure secure
data transmission. End-to-end latency from sensor sampling
to cloud write averages 205 ms. Transmission reliability is
quantified by the packet success rate Ryansmit defined as:

Nsuccess

R transmit N
total

where Ngyceess denotes the number of sensor data frames
successfully acknowledged by the cloud, and Nt is the total
number of frames transmitted in a given interval. During
testing, a reliability rate above 0.97 was consistently observed
over Wi-Fi, indicating robustness against packet loss.

I11. Analytics Layer

A cloud-hosted service listens for new data frames and
applies a sliding-window feature extractor with a window
length of 10 seconds and step size of 2 seconds. This computes
time-domain metrics including mean heart rate, standard
deviation, and peak acceleration, as well as spectral features
for fetal movement patterns in the 0.5-5 Hz frequency range
characteristic of fetal kicks and maternal activity patterns in
the 0.1-20 Hz range for normal movement classification.
These feature vectors feed into a lightweight Logistic
Regression classifier. The prototype classifier was trained on
a preliminary dataset of 120 windows to demonstrate system
functionality. The model outputs a probability score p that an
emergency condition is present.

IV. Notification Layer

Whenever p > 0.85, a multi-channel alert is triggered. The
Firebase function invokes:

1. SMS dispatch via a RESTful gateway to patient’s
designated contacts.

2. In-App Alert on the Flutter mobile application,
which also displays live-location coordinates via the
device’s GPS.

3. Hospital Alert through a secure webhook to the
nearest obstetric care facility.
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Fig. 1. Architecture of pregAthl Maternal Health Monitoring System



IMPLEMENTATION

The pregAthl prototype was implemented end-to-end,
encompassing hardware firmware, cloud analytics, and a
mobile application. The key implementation details are
summarized below:

I. Hardware Integration

A custom PCB mounts the ESP8266 microcontroller
alongside the MAX30100 sensor and connects to two
MPU6050 modules via I?C interface. One MPUG6050 is
positioned on the abdominal region and another on the wrist
to enable differential signal processing for separating maternal
movement from fetal kicks.

Table I. Hardware Specifications and Sampling Rates

Component Model | Inter | Sa | Notes
face mpl
ing
Rat
e
Microcontroll | ESP82 | GPIO —| Runs
er 66 , 12C NodeMCU
firmware
PPG Sensor | MAX3 | I12C 100 | Heartrate and
(Wrist) 0100 Hz | SpO:
readings
IMU MPUG0 | 12C 50 Fetal kicks +
. 50 Hz maternal
(Abdominal) activity
classification
IMU (Wrist) | MPUGO | 12C 50 Maternal
50 Hz movement +
fall detection

The firmware, written in C++ using Arduino-ESP8266
libraries, applies a 5 Hz low-pass filter to raw PPG samples
and processes acceleration vectors from both MPUG6050
sensors through dual-channel filtering. For this, the wrist
sensor data undergoes an earth-coordinate transformation via
a complementary filter for maternal fall detection, while the
abdominal sensor data is processed with a 0.5-5 Hz bandpass
filter to isolate fetal movements after subtracting the maternal
activity component, enabling comprehensive emergency
scenario identification.

1. Data Transmission

Filtered data frames (1-second windows) are serialized
into JSON, encrypted using AES-256, and transmitted to
Firebase via HTTPS POST requests. A simple
acknowledgment mechanism—each frame includes a
sequence number—is implemented to detect and retry
dropped packets. Sensor-to-cloud transmission latency
averages 205 ms.

I11. Machine Learning Pipeline

A preliminary dataset of 120 labeled windows (80 normal
activity, 25 simulated fall events, 15 simulated abnormal fetal
movement patterns) was collected from six volunteers in
controlled conditions. From this dataset, 96 windows were
used for training and the remaining 24 windows were held out
for validation.

Feature extraction computes:

e Time-Domain: mean heart rate, HRV (standard
deviation), peak acceleration from both sensors

e Frequency-Domain: power spectral density of fetal
movement bands (0.5-5 Hz) with integrated maternal
activity pattern analysis

e Fetal Movement-Specific: amplitude variance in
fetal kick frequency range, movement pattern
irregularity, baseline deviation metrics

e Maternal Activity-Specific: activity classification
features distinguishing between walking (1-3 Hz),
sitting transitions (0.1-1 Hz), and lying positions
(0.1-0.5 Hz)

These ten features per window, including fetal movement-
specific metrics derived from the differential processing of
dual MPU6050 sensors, feed a Logistic Regression classifier.

IV. Mobile Application and Alert Workflow

The Flutter app subscribes to Firebase event streams.
Upon receiving a classifier score p, the app compares p to
threshold 7 = 0.85. If p > 7, the following occur:

1. In-App Alert: Red banner with "Emergency
Detected" and live heart-rate/fetal movement graph.
A 'Cancel Alert' button is also displayed, allowing
the user to manually dismiss a false alarm.

2. SMS Dispatch: HTTP call to Twilio API to send
emergency details and GPS link.

3. Hospital Notification: Secure webhook POST to the
nearest facility’s REST endpoint.

All alerts are timestamped and require a manual
“Acknowledge” tap; lack of acknowledgment within 30 s
escalates the notification to the next responder in a
round-robin list.

RESULT

This section presents a comprehensive evaluation of
pregAthl's system architecture, focusing on hardware
integration, data transmission reliability, notification delivery,
and user interface usability.

I. Sensor to Cloud Latency

End-to-end transmission latency was measured over 100
consecutive sensor frames delivered via home Wi-Fi. The
measurements yielded an average latency of 205 ms, standard
deviation of 18 ms, a minimum of 180 ms, and a maximum of
240 ms, corresponding to a jitter of 60 ms.

Table 1. Sensor-to-Cloud Latency Metrics

Metric Value
Average latency | 205 ms
Standard deviation | 18 ms
Maximum observed | 240 ms
Minimum observed | 180 ms
Jitter J 60 ms




Latency Trend Across 100 Sensor Transmissions

N

-

(=3
fi

Latency (ms)
N
=
o

0 20 40

60 80 100

Transmission Index

Fig. 2. Latency Trend Across 100 Sensor Transmissions

Here, J = 60 ms, indicating consistent delivery times suitable
for real-time monitoring. The latency distribution indicates
that 95% of transmissions occur within £1.96 ¢
(approximately 169-241 ms), ensuring that critical signals
are available to downstream analytics without perceptible
delay.

J = max;(L;) — min;(L;) = 240ms — 180ms = 60ms

I1. Classifier Effectiveness
The prototype classifier was validated using a held-out set
of 24 labeled windows from the 120-sample dataset. In
addition to conventional accuracy, five balanced metrics are
reported to account for class imbalance and diagnostic value:
e Balanced Accuracy (BA): Quantifies the average
of sensitivity and specificity

1
BA = 3 (TPR + TNR)
e G-Mean: Emphasizes joint performance on both

classes
G — Mean = VTPR * TNR

e Negative Predictive Value (NPV): Measures
reliability when predicting non-emergency

NPV = INTFN
e Fowlkes—Mallows Index (FMI):
precision and recall geometrically
TP TP
= k
TP+ FP TP+FN

e Diagnostic Odds Ratio (DOR): Summarizes

overall diagnostic strength
TP TN
DOR

“FP+FN

Balances

FMI

In addition, Cohen’s Kappa (k) was computed to account for

chance agreement:
= Do — De
1- De
where p, is the observed accuracy and pe the expected chance
accuracy.
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Table I11. Classifier Performance on Alternative Metrics

Model BA | G-Mea | NP | FMI | DO | &
(%) | n \% R
(%)

Logistic 78. | 0.821 76.2 | 0.79 | 128 | 0.5
Regressio | 5 3 7

n

Decision | 72. | 0.756 714 | 072 | 8.2 04
Tree 1 8 4
Random 69. | 0.742 68.9 | 0.71 | 6.9 0.4
Forest 8 1 0
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Fig. 4. Feature Importance Analysis

As shown in Fig. 4, the Logistic Regression model
derives the greatest discriminative power from mean heart
rate and heart-rate variability, with secondary contributions
from peak acceleration and fetal movement spectral features.
This feature importance ranking confirms that combining
PPG and motion signals is essential for reliable detection of
both cardiovascular anomalies and fall events, with fetal
movement patterns providing additional discriminative
power.

I11. Notification Reliability

Validation of the multichannel alert workflow was
performed by simulating 50 emergency events while the
mobile app, SMS gateway, and hospital webhook remained
active.

Table IV. Average Delivery Times

Channel Delivery Time (mean + o)
In-App Notification 1.8+0.2s
SMS Dispatch 19+03s
Hospital Webhook 1.7+02s

All channels reached their targets within a 3-second
deadline for every event, yielding a 100% success rate. The
cumulative delay can be modeled as:

Ltotal = Lupload + Lprocess + Lalert
where Lypioad represents sensor-to-cloud transmission time (=
205 ms), Lprocess denotes model inference time on the cloud (=
500 ms), and Laer is the delay incurred during notification

dispatch (= 1.2 s). This formulation helps justify the observed
end-to-end latency of approximately 1.9 seconds.

Table V. Consolidated System Performance Metrics

Module Metric Value

Sensor Latency Mean £ o 205+ 18 ms

Classifier Balanced 78.5%
Accuracy Accuracy

Notification SMS 19+0.3s
Delay Dispatch

Usability Score SUS 85.4

The 205ms latency reported represents only sensor-to-
cloud data transmission, while complete emergency response
(from detection to alert delivery) requires approximately 1.9
seconds.

Emergency Alert Defivery Times Across Channels
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Fig. 5. Alert Delivery Time Trends Across Channels

IV. End-User Acceptability
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Fig. 6. pregAthl Mobile Application Dashboard Interface

Fig. 6 shows the mobile application dashboard interface,
displaying real-time physiological monitoring data, alert
status, and emergency contact options in an intuitive layout
designed for expectant mothers.

A usability study with twelve expectant mothers (ages 22—
35) employed the System Usability Scale (SUS) and



semistructured interviews. The average SUS score was 85.4,
significantly above the 68-point threshold denoting acceptable
usability. Participants highlighted the intuitive dashboard
layout, clear emergency prompts, and confidence derived
from live-location tracking. Battery-usage logs indicated an
average smartphone consumption increase of only 4 % over
an 8-hour monitoring window, confirming minimal intrusion
on daily device use.

100 System Usability Scale Scores for 12 Participants

~—- Usability Threshold (68)

80 1

60

SUS Score

40 4

Participant Index

Fig. 7. Distribution of System Usability Scale Scores

DISCUSSION

The prototype evaluation of pregAthl demonstrates
successful system integration while highlighting important
limitations that must be addressed before clinical deployment.

I. Latency Performance

Achieving a mean end-to-end latency of 205ms
(0 =18 ms) with a maximum jitter of 60 ms confirms that
Wi-Fi transmission is appropriate for real-time emergency
monitoring. This latency margin ensures that critical
physiological changes are available to the analytics pipeline
with negligible delay, supporting timely alert generation.

I1. Classification Insights

The Logistic Regression classifier demonstrated
reasonable performance for a proof-of-concept, with a
Balanced Accuracy of 78.5%, G-Mean of 0.821, and Cohen's
Kappa of 0.57, indicating moderate agreement beyond chance.
Feature importance analysis (Fig. 4) revealed that mean heart
rate and heart-rate variability contributed most significantly to
emergency detection, with fetal movement-specific features
derived from differential processing of the dual MPU6050
sensors (abdominal minus wrist data) providing crucial
discriminative power for fetal wellbeing emergencies.
Additionally, maternal activity classification features helped
reduce false alarms by distinguishing between normal daily
activities and actual emergency scenarios. The linear nature of
Logistic Regression also provides better interpretability for
clinical decision-making compared to ensemble methods,
with clear coefficient values that can be explained to
healthcare providers.

I11. Multi-Model Comparison

The comparative analysis demonstrates that Logistic
Regression provides the most reliable performance across
balanced metrics for this preliminary proof-of-concept study.
With a Cohen's Kappa of 0.57 and G-Mean of 0.821, the linear
approach shows substantial agreement beyond chance and
balanced performance across emergency and non-emergency
classes. This advantage likely stems from the limited dataset
size (120 samples), where simpler linear models generalize
better than complex ensemble methods that are prone to
overfitting.

IV. Notification Workflow

A 100 % success rate across in-app, SMS, and webhook
channels indicates that the notification architecture is highly
resilient. Future work may integrate a GSM fallback directly
from the ESP8266 to maintain alert delivery when Wi-Fi
connectivity is lost, ensuring robustness in rural or
low-infrastructure areas.

V. User Acceptability

High System Usability Scale scores (mean = 85.4) and
positive feedback on battery impact and interface clarity
demonstrate that pregnant users find pregAthl both effective
and unobtrusive. Personalization features—such as adjustable
alert thresholds based on individual baselines—could further
enhance user trust and reduce false-alarm fatigue.

VI. Limitations and Future Work

Field trials were conducted under controlled network
conditions with a limited sample size of 6 volunteers and
simulated emergencies rather than real critical events. The
preliminary dataset of 120 samples, while sufficient for proof-
of-concept validation, may favor simpler linear models over
ensemble approaches that typically require larger datasets to
demonstrate their full potential. A broader clinical pilot—
incorporating diverse environmental factors (e.g., rural
networks, varied body postures) and long-term wearability
studies—will be required to validate system generalizability.
Additionally, integrating edge-based analytics (e.g., on-device
lightweight neural networks) could reduce cloud dependency
and further lower end-to-end latency.

CONCLUSION

This study demonstrated the technical viability of
pregAthl, an loT-enabled maternal health monitoring system
integrating dual-sensor networks, cloud analytics, and multi-
channel alerts. Rigorous evaluation showed robust system
performance, with end-to-end latency consistently below 250
ms (mean=205+18 ms) and maximum jitter of 60 ms, ensuring
timely data availability. The machine learning pipeline
achieved clinically relevant performance (Balanced
Accuracy=78.5%, G-mean=0.821, DOR=12.8, «=0.57) on
preliminary validation data (24 windows from 6 participants).
The notification subsystem maintained perfect reliability (100%
delivery within 3s) across in-app, SMS, and hospital alerts.
User testing revealed strong acceptance (SUS=85.4), with
particular praise for intuitive alerts and negligible battery
drain (less than 5% daily impact).

While these results establish proof-of-concept, several
critical next steps must be addressed before deployment. A
comprehensive clinical trial (N>1000) will validate system
efficacy across diverse demographics, activity patterns, and
true obstetric emergencies, while also enabling more
definitive comparison of machine learning approaches.
Technical refinements will incorporate on-device processing
(ESP8266-0ptimized models) to enhance responsiveness and
reliability in low-connectivity scenarios. Future iterations will
also implement adaptive thresholding based on individual
biometric baselines and gestational progression, while
expanded connectivity options (GSM fallback, LoRa mesh)
will ensure operation in infrastructure-limited regions.
Through these advancements, pregAthl aims to mature into a
robust, field-ready solution for reducing maternal health
disparities in low-resource settings worldwide.
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