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Abstract—Rapid detection of maternal health emergencies—

such as aberrant heart rates, fetal movement anomalies detected 

through accelerometer-based fetal kick monitoring, or fall 

events—are critical for improving outcomes. This work presents 

pregAthI, a Smart IoT-Based Maternal Health Monitoring 

System that integrates an ESP8266 microcontroller with a 

MAX30100 heart-rate/SpO₂ sensor and dual MPU6050 

accelerometer/gyroscope modules positioned on the abdominal 

region and wrist for comprehensive motion analysis to capture 

maternal activity patterns and detect fetal movements through 

accelerometer-based kick monitoring in real time. Sensor 

readings are transmitted via Wi-Fi to a Firebase backend, where 

a cloud-hosted machine-learning model analyzes 

sliding-window features to identify potential emergencies and 

issues alerts through a Flutter mobile application while 

forwarding live-location coordinates to designated 

responders—spouse, nearest hospital, and trained volunteers. 

The system demonstrates potential for scalable, low-cost 

maternal care solutions in resource-constrained environments 

through its integrated approach to emergency detection and 

notification. 
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INTRODUCTION 

Every year, thousands of maternal and neonatal deaths 
occur due to delayed recognition of obstetric emergencies 
such as preterm labor, hypertensive crises, and accidental falls 
[1], [2]. Conventional prenatal care relies on periodic clinic 
visits and subjective symptom reporting, limiting continuous 
assessment of a mother’s condition. Recent advances in the 
Internet of Things (IoT) and mobile health (mHealth) offer an 
opportunity to bridge this gap by providing real-time 
physiological monitoring outside clinical settings [3], [4].  

IoT devices—particularly low-power microcontrollers 
like the ESP8266—can interface with medical-grade sensors 
to continuously capture vital signs (e.g., heart rate, oxygen 
saturation) and motion metrics (e.g., acceleration, orientation) 
including fetal movement activity through accelerometer-
based kick detection [5], [6]. When combined with cloud 
computing and mobile applications, such systems enable 
automatic detection of anomalies including maternal fall 
events, abnormal activity patterns, and fetal movement 
irregularities, with immediate notifications reducing response 
time. However, many existing solutions focus solely on single 
parameters (e.g., heart rate) or lack robust emergency 
detection models. 

This paper introduces pregAthI, a prototype maternal 
monitoring architecture that fuses multimodal sensor data 
from the MAX30100 PPG and dual MPU6050 IMUs for 
cardiovascular anomaly detection; applies a lightweight 
Logistic Regression classifier in the cloud to detect abnormal 
fetal movement patterns through accelerometer-based kick 
detection and fall events; and delivers coordinated alerts and 
location information to a predefined network of responders—
spouse, nearest hospital, and trained volunteers—via a Flutter 
mobile app backed by Firebase. By integrating continuous 
monitoring, data analytics, and multichannel notifications, 
pregAthI aims to enable proactive intervention in resource-
limited settings. 

LITERATURE REVIEW 

Early efforts in remote maternal monitoring leveraged 
single-modality physiological measurements to detect basic 
anomalies [5]. Gupta et al. [7] and Ramprabhu et al. [8] 
demonstrated that photoplethysmography (PPG)–based heart-
rate tracking, when paired with simple threshold rules, could 
alert caregivers to bradycardia or tachycardia events via SMS 
or web dashboards. However, these systems lacked motion 
sensing to distinguish true emergencies (e.g., syncope or falls) 
from routine activity. Pawlak et al. [9] extended this work by 
integrating ECG and SpO₂ sensors into a home cyber-physical 
system, applying signal-processing filters to reduce false 
alarms, yet still depended on central monitoring stations. 
Tabassum et al. [10] explored fetal movement detection using 
accelerometer-based kick monitoring and polynomial 
regression, achieving high accuracy for fetal wellbeing 
assessment—but without addressing other critical events such 
as falls or hypotensive episodes. Our approach builds upon 
their methodology while integrating comprehensive 
emergency detection including fall events and cardiovascular 
anomalies. 

To broaden situational awareness, subsequent platforms 
incorporated multiple sensor types and connectivity options. 
Bagwari and Gairola [11] combined pulse, temperature, and 
blood-pressure measurements with GSM-based mobile 
reporting, showing improved continuity of care but remaining 
rule-driven. Segall et al. [12] and Pawelek et al. [13] 
investigated patient engagement in personal health record 
systems, emphasizing the need for intuitive interfaces that 
could display multi-sensor data in real time. Sarhaddi et al. [14] 
proposed an IoTenabled maternal monitoring system that 
fused PPG and motion data, yet still relied on static thresholds 
for emergency detection, leading to variable sensitivity in 
dynamic home environments. 



More recent research has turned to machine-learning 
techniques and richer alert frameworks. Aldughayfiq et al. [15] 
applied decision-tree classifiers to PPG time-series for 
arrhythmia detection, achieving precision improvements over 
static rules. Further research by Atzmon et al. [16] introduced 
a novel, noninvasive PPG-based sensor for continuous 
maternal hemodynamic monitoring; however, their system 
was designed specifically for use during delivery in a clinical 
setting. This approach, while valuable for intrapartum care, 
does not address the need for comprehensive, long-term 
monitoring in a home environment where events like falls and 
fetal movement anomalies are critical concerns. An approach 
by Zhang et al. [17] successfully applied ensemble classifiers 
to PPG and accelerometer features for predicting hypotensive 
episodes; however, the framework lacked an integrated 
emergency alert system for post-prediction response. 

In summary, no existing solution simultaneously fuses 
multimodal physiological and motion sensing with dual-
purpose accelerometer deployment for both fetal movement 
monitoring and fall prevention, leverages machine-learning 
prediction in the cloud, and orchestrates multi-recipient, 
location-aware notifications. pregAthI fills this gap by 
integrating MAX30100 PPG and dual MPU6050 IMU data, 
applying a lightweight sliding-window classifier, and issuing 
synchronized app-based, SMS, and live-location alerts to 
spouses, hospitals, and community volunteers. 

METHODOLOGY 

The pregAthI architecture (Fig. 1) comprises four 
integrated layers—sensing, connectivity, analytics, and 
notification—each optimized for low cost, reliability, and 
rapid response in resource-limited settings. 

I. Sensing Layer 

At the edge, a single ESP8266 microcontroller interfaces 
with three medical-grade modules: the MAX30100 PPG 
sensor positioned on the wrist for photoplethysmography 
(heart rate and SpO₂) and dual MPU6050 inertial modules for 
three-axis acceleration and gyroscope data. The system 
employs two MPU6050 sensors: one positioned on the 
abdominal region and another on the wrist. This dual-sensor 
approach enables separation of maternal movement from fetal 
kick patterns through differential signal processing, where the 
wrist sensor captures maternal activity that can be subtracted 
from the abdominal sensor readings to isolate fetal movements. 

The firmware samples PPG signals at 100 Hz and motion 
data from both MPU6050 sensors at 50 Hz each, while 
applying digital low-pass filtering with a cutoff frequency of 
5 Hz to reduce noise. For comprehensive motion analysis, we 
implement specialized filtering using a 0.5-5 Hz bandpass 
filter on the abdominal sensor data to isolate fetal kick patterns 
after subtracting maternal activity captured by the wrist sensor, 

while analyzing maternal activity patterns in the 0.1-20 Hz 
range to distinguish between normal daily activities and 
emergency scenarios, with all readings timestamped for 
synchronization. 

 

II. Connectivity Layer 

Filtered sensor readings are batched into 1-second frames 
and transmitted via Wi-Fi (IEEE 802.11 b/g/n) to a Firebase 
real-time database with AES-256 encryption to ensure secure 
data transmission. End-to-end latency from sensor sampling 
to cloud write averages 205 ms. Transmission reliability is 
quantified by the packet success rate Rtransmit defined as: 

𝑅𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡 =
𝑁𝑠𝑢𝑐𝑐𝑒𝑠𝑠

𝑁𝑡𝑜𝑡𝑎𝑙

 

where Nsuccess denotes the number of sensor data frames 
successfully acknowledged by the cloud, and Ntotal is the total 
number of frames transmitted in a given interval. During 
testing, a reliability rate above 0.97 was consistently observed 
over Wi-Fi, indicating robustness against packet loss. 

III. Analytics Layer 

A cloud-hosted service listens for new data frames and 
applies a sliding-window feature extractor with a window 
length of 10 seconds and step size of 2 seconds. This computes 
time-domain metrics including mean heart rate, standard 
deviation, and peak acceleration, as well as spectral features 
for fetal movement patterns in the 0.5-5 Hz frequency range 
characteristic of fetal kicks and maternal activity patterns in 
the 0.1-20 Hz range for normal movement classification. 
These feature vectors feed into a lightweight Logistic 
Regression classifier. The prototype classifier was trained on 
a preliminary dataset of 120 windows to demonstrate system 
functionality. The model outputs a probability score p that an 
emergency condition is present. 

IV. Notification Layer  

Whenever p > 0.85, a multi-channel alert is triggered. The 
Firebase function invokes: 

1. SMS dispatch via a RESTful gateway to patient’s 

designated contacts. 

2. In-App Alert on the Flutter mobile application, 

which also displays live-location coordinates via the 

device’s GPS. 

3. Hospital Alert through a secure webhook to the 

nearest obstetric care facility. 

 

 

 

Fig. 1. Architecture of pregAthI Maternal Health Monitoring System 



IMPLEMENTATION 

The pregAthI prototype was implemented end-to-end, 
encompassing hardware firmware, cloud analytics, and a 
mobile application. The key implementation details are 
summarized below: 

I. Hardware Integration 
A custom PCB mounts the ESP8266 microcontroller 
alongside the MAX30100 sensor and connects to two 
MPU6050 modules via I²C interface. One MPU6050 is 
positioned on the abdominal region and another on the wrist 
to enable differential signal processing for separating maternal 
movement from fetal kicks.  

Table I. Hardware Specifications and Sampling Rates 

Component Model Inter
face 

Sa
mpl
ing 
Rat
e 

Notes 

Microcontroll
er 

ESP82
66 

GPIO
, I²C 

– Runs 
NodeMCU 
firmware 

PPG Sensor 
(Wrist) 

MAX3
0100 

I²C 100 
Hz 

Heart rate and 
SpO₂ 
readings 

IMU 

(Abdominal) 

MPU60
50 

I²C 50 
Hz 

Fetal kicks + 
maternal 
activity 
classification 

IMU (Wrist) MPU60
50 

I²C 50 
Hz 

Maternal 
movement + 
fall detection 

The firmware, written in C++ using Arduino-ESP8266 
libraries, applies a 5 Hz low-pass filter to raw PPG samples 
and processes acceleration vectors from both MPU6050 
sensors through dual-channel filtering. For this, the wrist 
sensor data undergoes an earth-coordinate transformation via 
a complementary filter for maternal fall detection, while the 
abdominal sensor data is processed with a 0.5-5 Hz bandpass 
filter to isolate fetal movements after subtracting the maternal 
activity component, enabling comprehensive emergency 
scenario identification. 

II. Data Transmission 

Filtered data frames (1-second windows) are serialized 
into JSON, encrypted using AES-256, and transmitted to 
Firebase via HTTPS POST requests. A simple 
acknowledgment mechanism—each frame includes a 
sequence number—is implemented to detect and retry 
dropped packets. Sensor-to-cloud transmission latency 
averages 205 ms. 

 

III. Machine Learning Pipeline 

A preliminary dataset of 120 labeled windows (80 normal 
activity, 25 simulated fall events, 15 simulated abnormal fetal 
movement patterns) was collected from six volunteers in 
controlled conditions. From this dataset, 96 windows were 
used for training and the remaining 24 windows were held out 
for validation.  

Feature extraction computes: 

 Time-Domain: mean heart rate, HRV (standard 
deviation), peak acceleration from both sensors 

 Frequency-Domain: power spectral density of fetal 
movement bands (0.5-5 Hz) with integrated maternal 
activity pattern analysis 

 Fetal Movement-Specific: amplitude variance in 
fetal kick frequency range, movement pattern 
irregularity, baseline deviation metrics 

 Maternal Activity-Specific: activity classification 
features distinguishing between walking (1-3 Hz), 
sitting transitions (0.1-1 Hz), and lying positions 
(0.1-0.5 Hz) 

These ten features per window, including fetal movement-
specific metrics derived from the differential processing of 
dual MPU6050 sensors, feed a Logistic Regression classifier. 

IV. Mobile Application and Alert Workflow 
 The Flutter app subscribes to Firebase event streams. 
Upon receiving a classifier score p, the app compares p to 
threshold τ = 0.85. If p > τ, the following occur: 

1. In-App Alert: Red banner with "Emergency 
Detected" and live heart-rate/fetal movement graph. 
A 'Cancel Alert' button is also displayed, allowing 
the user to manually dismiss a false alarm. 

2. SMS Dispatch: HTTP call to Twilio API to send 
emergency details and GPS link. 

3. Hospital Notification: Secure webhook POST to the 
nearest facility’s REST endpoint. 

All alerts are timestamped and require a manual 
“Acknowledge” tap; lack of acknowledgment within 30 s 
escalates the notification to the next responder in a 
round-robin list. 

RESULT 

This section presents a comprehensive evaluation of 
pregAthI's system architecture, focusing on hardware 
integration, data transmission reliability, notification delivery, 
and user interface usability. 

I.  Sensor to Cloud Latency 

End-to-end transmission latency was measured over 100 
consecutive sensor frames delivered via home Wi-Fi. The 
measurements yielded an average latency of 205 ms, standard 
deviation of 18 ms, a minimum of 180 ms, and a maximum of 
240 ms, corresponding to a jitter of 60 ms.  

Table II. Sensor-to-Cloud Latency Metrics 

Metric Value 

Average latency 205 ms 

Standard deviation 18 ms 

Maximum observed 240 ms 

Minimum observed 180 ms 

Jitter J 60 ms 



 

 
Fig. 2. Latency Trend Across 100 Sensor Transmissions 

 

Here, J = 60 ms, indicating consistent delivery times suitable 

for real-time monitoring. The latency distribution indicates 

that 95 % of transmissions occur within ±1.96 σ 

(approximately 169–241 ms), ensuring that critical signals 

are available to downstream analytics without perceptible 

delay. 

𝐽 = 𝑚𝑎𝑥𝑖(𝐿𝑖) −𝑚𝑖𝑛𝑖(𝐿𝑖) = 240𝑚𝑠 − 180𝑚𝑠 = 60𝑚𝑠 
 

II. Classifier Effectiveness 

The prototype classifier was validated using a held-out set 
of 24 labeled windows from the 120-sample dataset. In 

addition to conventional accuracy, five balanced metrics are 

reported to account for class imbalance and diagnostic value: 

 Balanced Accuracy (BA): Quantifies the average 

of sensitivity and specificity 

𝐵𝐴 =
1

2
(𝑇𝑃𝑅 + 𝑇𝑁𝑅) 

 G-Mean: Emphasizes joint performance on both 
classes 

𝐺 −𝑀𝑒𝑎𝑛 = √𝑇𝑃𝑅 ∗ 𝑇𝑁𝑅 

 Negative Predictive Value (NPV): Measures 

reliability when predicting non-emergency 

𝑁𝑃𝑉 =
𝑇𝑁

𝑇𝑁 + 𝐹𝑁
 

 Fowlkes–Mallows Index (FMI): Balances 

precision and recall geometrically 

𝐹𝑀𝐼 = √
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
∗

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 Diagnostic Odds Ratio (DOR): Summarizes 

overall diagnostic strength 

𝐷𝑂𝑅 =
𝑇𝑃 ∗ 𝑇𝑁

𝐹𝑃 ∗ 𝐹𝑁
 

 

In addition, Cohen’s Kappa (κ) was computed to account for 

chance agreement: 

𝜅 =
𝑝𝑜 − 𝑝𝑒
1 − 𝑝𝑒

 

where po is the observed accuracy and pe the expected chance 
accuracy. 

 

 
Fig. 3. Classifier Evaluation Metrics Comparison 



Table III. Classifier Performance on Alternative Metrics 

Model BA 

(%) 

G-Mea

n 

NP

V 

(%) 

FMI DO

R 

κ 

Logistic 

Regressio

n 

78.

5 

0.821 76.2 0.79

3 

12.8 0.5

7 

Decision 

Tree 

72.

1 

0.756 71.4 0.72

8 

8.2 0.4

4 

Random 

Forest 

69.

8 

0.742 68.9 0.71

1 

6.9 0.4

0 

 

 

Fig. 4. Feature Importance Analysis 

 As shown in Fig. 4, the Logistic Regression model 

derives the greatest discriminative power from mean heart 

rate and heart-rate variability, with secondary contributions 

from peak acceleration and fetal movement spectral features. 

This feature importance ranking confirms that combining 

PPG and motion signals is essential for reliable detection of 
both cardiovascular anomalies and fall events, with fetal 

movement patterns providing additional discriminative 
power. 

III. Notification Reliability 

Validation of the multichannel alert workflow was 

performed by simulating 50 emergency events while the 
mobile app, SMS gateway, and hospital webhook remained 

active. 

Table IV. Average Delivery Times 

Channel Delivery Time (mean ± σ) 

In-App Notification 1.8 ± 0.2 s 

SMS Dispatch 1.9 ± 0.3 s 

Hospital Webhook 1.7 ± 0.2 s 

 

 

All channels reached their targets within a 3-second 
deadline for every event, yielding a 100% success rate. The 

cumulative delay can be modeled as: 

𝐿𝑡𝑜𝑡𝑎𝑙 = 𝐿𝑢𝑝𝑙𝑜𝑎𝑑 + 𝐿𝑝𝑟𝑜𝑐𝑒𝑠𝑠 + 𝐿𝑎𝑙𝑒𝑟𝑡  

where Lupload represents sensor-to-cloud transmission time (≈ 

205 ms), Lprocess denotes model inference time on the cloud (≈ 

500 ms), and Lalert is the delay incurred during notification 

dispatch (≈ 1.2 s). This formulation helps justify the observed 

end-to-end latency of approximately 1.9 seconds. 

Table V. Consolidated System Performance Metrics 

Module Metric Value 

Sensor Latency Mean ± σ 205 ± 18 ms 

Classifier 

Accuracy 

Balanced 

Accuracy 

78.5% 

Notification 

Delay 

SMS 

Dispatch 

1.9 ± 0.3 s 

Usability Score SUS 85.4 

 

The 205ms latency reported represents only sensor-to-

cloud data transmission, while complete emergency response 

(from detection to alert delivery) requires approximately 1.9 

seconds. 
 

 
Fig. 5. Alert Delivery Time Trends Across Channels 

 

IV. End-User Acceptability 

 

 
Fig. 6. pregAthI Mobile Application Dashboard Interface 

Fig. 6 shows the mobile application dashboard interface, 
displaying real-time physiological monitoring data, alert 
status, and emergency contact options in an intuitive layout 
designed for expectant mothers. 

A usability study with twelve expectant mothers (ages 22–

35) employed the System Usability Scale (SUS) and 



semistructured interviews. The average SUS score was 85.4, 

significantly above the 68-point threshold denoting acceptable 

usability. Participants highlighted the intuitive dashboard 

layout, clear emergency prompts, and confidence derived 

from live-location tracking. Battery-usage logs indicated an 

average smartphone consumption increase of only 4 % over 
an 8-hour monitoring window, confirming minimal intrusion 

on daily device use. 

 

 
Fig. 7. Distribution of System Usability Scale Scores 

DISCUSSION 

The prototype evaluation of pregAthI demonstrates 
successful system integration while highlighting important 
limitations that must be addressed before clinical deployment. 

I. Latency Performance 
Achieving a mean end-to-end latency of 205 ms 

(σ = 18 ms) with a maximum jitter of 60 ms confirms that 
Wi-Fi transmission is appropriate for real-time emergency 
monitoring. This latency margin ensures that critical 
physiological changes are available to the analytics pipeline 
with negligible delay, supporting timely alert generation. 

II. Classification Insights 
The Logistic Regression classifier demonstrated 

reasonable performance for a proof-of-concept, with a 
Balanced Accuracy of 78.5%, G-Mean of 0.821, and Cohen's 
Kappa of 0.57, indicating moderate agreement beyond chance. 
Feature importance analysis (Fig. 4) revealed that mean heart 
rate and heart-rate variability contributed most significantly to 
emergency detection, with fetal movement-specific features 
derived from differential processing of the dual MPU6050 
sensors (abdominal minus wrist data) providing crucial 
discriminative power for fetal wellbeing emergencies. 
Additionally, maternal activity classification features helped 
reduce false alarms by distinguishing between normal daily 
activities and actual emergency scenarios. The linear nature of 
Logistic Regression also provides better interpretability for 
clinical decision-making compared to ensemble methods, 
with clear coefficient values that can be explained to 
healthcare providers. 

III. Multi-Model Comparison 
The comparative analysis demonstrates that Logistic 

Regression provides the most reliable performance across 
balanced metrics for this preliminary proof-of-concept study. 
With a Cohen's Kappa of 0.57 and G-Mean of 0.821, the linear 
approach shows substantial agreement beyond chance and 
balanced performance across emergency and non-emergency 
classes. This advantage likely stems from the limited dataset 
size (120 samples), where simpler linear models generalize 
better than complex ensemble methods that are prone to 
overfitting. 

IV. Notification Workflow  
A 100 % success rate across in-app, SMS, and webhook 

channels indicates that the notification architecture is highly 
resilient. Future work may integrate a GSM fallback directly 
from the ESP8266 to maintain alert delivery when Wi-Fi 
connectivity is lost, ensuring robustness in rural or 
low-infrastructure areas. 

V. User Acceptability 
High System Usability Scale scores (mean = 85.4) and 

positive feedback on battery impact and interface clarity 
demonstrate that pregnant users find pregAthI both effective 
and unobtrusive. Personalization features—such as adjustable 
alert thresholds based on individual baselines—could further 
enhance user trust and reduce false-alarm fatigue. 

VI. Limitations and Future Work 
Field trials were conducted under controlled network 

conditions with a limited sample size of 6 volunteers and 
simulated emergencies rather than real critical events. The 
preliminary dataset of 120 samples, while sufficient for proof-
of-concept validation, may favor simpler linear models over 
ensemble approaches that typically require larger datasets to 
demonstrate their full potential. A broader clinical pilot—
incorporating diverse environmental factors (e.g., rural 
networks, varied body postures) and long-term wearability 
studies—will be required to validate system generalizability. 
Additionally, integrating edge-based analytics (e.g., on-device 
lightweight neural networks) could reduce cloud dependency 
and further lower end-to-end latency. 

CONCLUSION 

This study demonstrated the technical viability of 
pregAthI, an IoT-enabled maternal health monitoring system 
integrating dual-sensor networks, cloud analytics, and multi-
channel alerts. Rigorous evaluation showed robust system 
performance, with end-to-end latency consistently below 250 
ms (mean=205±18 ms) and maximum jitter of 60 ms, ensuring 
timely data availability. The machine learning pipeline 
achieved clinically relevant performance (Balanced 
Accuracy=78.5%, G-mean=0.821, DOR=12.8, κ=0.57) on 
preliminary validation data (24 windows from 6 participants). 
The notification subsystem maintained perfect reliability (100% 
delivery within 3s) across in-app, SMS, and hospital alerts. 
User testing revealed strong acceptance (SUS=85.4), with 
particular praise for intuitive alerts and negligible battery 
drain (less than 5% daily impact). 

While these results establish proof-of-concept, several 
critical next steps must be addressed before deployment. A 
comprehensive clinical trial (N>1000) will validate system 
efficacy across diverse demographics, activity patterns, and 
true obstetric emergencies, while also enabling more 
definitive comparison of machine learning approaches. 
Technical refinements will incorporate on-device processing 
(ESP8266-optimized models) to enhance responsiveness and 
reliability in low-connectivity scenarios. Future iterations will 
also implement adaptive thresholding based on individual 
biometric baselines and gestational progression, while 
expanded connectivity options (GSM fallback, LoRa mesh) 
will ensure operation in infrastructure-limited regions. 
Through these advancements, pregAthI aims to mature into a 
robust, field-ready solution for reducing maternal health 
disparities in low-resource settings worldwide. 
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