
Submitted to Frontiers in Artificial Intelligence

Leveraging Small Language Models for Real-Time
Decision Support in Climate-Induced Urban

Mobility Disruptions
Venkatesan Murugan∗, Disha Daniel†, A Harsha Kumar∗, Sahaya Beni Prathiba‡*, R. Dhanalakshmi‡

∗School of Computer Science and Engineering, Vellore Institute of Technology, Chennai 600127, India
†School of Electronics Engineering, Vellore Institute of Technology, Chennai, India
‡Centre for Cyber Physical Systems, School of Computer Science and Engineering,

Vellore Institute of Technology, Chennai 600127, India
Email: venkatesan.m2022@vitstudent.ac.in, dishadaniel24@gmail.com, ahkharsha@gmail.com,

prathiba.sbb@vit.ac.in, dhanalakshmi.r@vit.ac.in
*Corresponding author

Abstract—The increase in climate change brings major chal-
lenges to urban transportation systems, with extreme weather
events showing the fragility of existing traffic management mod-
els. While Large Language Models (LLMs) offer sophisticated
reasoning, their high computational and latency overhead makes
them unsuitable for real-time, on-device decision support in of-
fline or resource-constrained environments. This paper addresses
the critical gap and proposes a domain-specific Small Language
Model (SLM) with optimization on edge deployment. A key
contribution is a synthetic data generation pipeline, which uses
a complex multi-variate simulation model, used to create the
Climate-Mobility Narrative Corpus (CMNC), a domain-specific
dataset of over 1 million context-rich entries describing realistic
climate-induced disruptions. The ClimateMobility-SLM (CM-
SLM), a 270M-parameter Gemma model, is trained from scratch
on this corpus. The framework is also tested using a set of
downstream algorithms for alert generation and routing, and its
performance is rigorously benchmarked. Extensive quantitative
analysis and ablation studies show that the CM-SLM, when
quantized, achieves a mean validation perplexity of 2.84 ± 0.05
and near-real-time inference speeds, significantly outperforming
larger, general-purpose baseline models in both domain-specific
accuracy and computational efficiency. This research demon-
strates that purpose-built SLMs are a powerful tool to use for
urban resilience, turning raw anomaly data into useful, human-
readable Decision Support information for emergency response.

Index Terms—Small Language Models (SLMs), Edge AI,
Traffic Management, Urban Mobility, Synthetic Data Generation,
Real-Time Decision Support, Natural Disaster, Deep Learning.

I. INTRODUCTION

As climate change intensifies, urban centers face mounting
pressure on their public infrastructure’s resilience. Extreme
weather events like flash and heat wave, snowstorms, etc.
are becoming common and increasingly severe, placing a
heavy burden on the transport infrastructure in a country of
origin [1]–[4]. These climate induced disruptions cause a chain
of failures, moving beyond simple inconvenience to cause
widespread economic paralysis, compromise public safety, and
severely limit emergency response and evacuation planning

[2], [5]. The roads and public transport systems that keep a
modern city running are very vulnerable to these black swan
weather events.

The management of traffic has reacted by implementing
various data-driven forecasting models that have adopted deep
learning methodologies, including Long Short-Term Mem-
ory(LSTM) networks [6]–[9]. While effective at predicting
traffic flow under normal, historical patterns, these models do
not perform well when faced with the non-linear dynamics
and unprecedented nature of climate-driven disruptions. They
are good at numerical prediction but cannot perform semantic
reasoning. A significant gap remains: the last-mile information
gap. A traffic operator may see that a road’s flow rate has
dropped to zero, but traditional models cannot explain why
(e.g., This is a flash flood) or suggest what to do (e.g., Advise
dispatching high-clearance vehicles).

The use of Large Language Models (LLMs) has also
become one of the helpful tools, as it is capable of both zero-
shot reasoning and natural language generation. In theory, an
LLM could ingest raw data and create the detailed, human-
readable alerts that operators need. However, their practical
application in this domain is very limited and not explored
much. The immense size of models like GPT-4 or Llama 3
makes them impractical for real-time deployment in edge or
resource-constrained environments, such as in-vehicle systems
or local traffic control hubs [10]. High latency, coupled with
a dependency on massive cloud infrastructure and significant
operational costs, renders them unsuitable for systems that
demand immediate, offline responses. Furthermore, as gener-
alist models, they often lack the specialized, domain-specific
knowledge needed to produce accurate and useful insights for
an urban transportation crisis [11], [12].

This paper suggests that a Small Language Model (SLM),
when purpose-built through domain-specific pretraining and
optimized for on-device operation, can bridge this capability-
efficiency gap. SLMs offer a balance between the reasoning
ability of LLMs and the computational efficiency required

1

Submitted to Frontiers in Artificial Intelligence

for real-time, offline applications, bringing the best of both
worlds [13]–[15]. Developing such a powerful, specialized tool
requires a high quality, domain-centric dataset that captures
the complex relationships between quantitative traffic data and
the qualitative, contextual nuances of climate events. Since no
such public corpus exists, creating one was necessary.

This paper details a framework for the development, train-
ing, and deployment of a domain-specific SLM aimed at
climate-mobility decision support. The primary contributions
are:

1) A New Synthetic Data Generation Pipeline: This
work introduces a method for synthetically generating a
large-scale, domain-specific corpus. This pipeline uses
a complex, multi-variate simulation model to generate
realistic anomaly data, that is then turned into over
1 million unique, context-rich narratives. The resulting
Climate-Mobility Narrative Corpus (CMNC) is a key
contribution.

2) Development of the ClimateMobility-SLM (CM-
SLM): The paper details the training of a 270M-
parameter Gemma-based model from scratch on the
CMNC. This includes a full architectural breakdown and
an optimization workflow (e.g., 8-bit quantization) to get
the model ready for high-performance inference on edge
devices.

3) A Set of Downstream Decision-Support Algorithms:
A set of four algorithms is suggested to show how this
can be implemented in real life. These algorithms show
how the SLM’s narrative output can be programmatically
converted into structured JSON alerts, assigned severity
levels, and used to generate adaptive rerouting recom-
mendations.

4) Rigorous Empirical Evaluation: The CM-SLM was
rigorously benchmarked against several baseline SLMs
(e.g., Qwen, SmolLM2) across a spectrum of metrics,
including language perplexity, BLEU scores, inference
speed, and memory footprint. This evaluation includes
extensive ablation studies on the impact of corpus size
and model quantization, confirming the framework’s
effectiveness.

The subsequent sections are as follows: Section II offers
a review of related works of current traffic modelling, other
techniques that are used in this domain, and edge computing.
Section III details the high-level, end-to-end framework of
the proposed system. Section IV details the technical core,
covering the corpus simulation model, SLM architecture, and
downstream algorithms. Section V is about the experimental
design, including datasets, baselines, and evaluation metrics.
Section VI presents and discusses the quantitative, qualitative,
and ablation study results. Lastly, the paper ends with the
conclusion provided in Section VII where the research findings
in this area are summarised, the limitation is identified, and
the future research ideas are proposed.

II. RELATED WORKS

The concepts incorporated in this paper relate to several of
the emerging areas rapidly: urban transportation, generative
artificial intelligence, and edge computing. The detailed review
provides a background of the suggested system, identifies the
limitations that are present, and gives the research gap that the
given work is intended to fill.

A. Traditional Traffic and Mobility Forecasting

Intelligent transportation systems (ITS) have always been
based on numerical traffic forecasting. Initial ways of predict-
ing the traffic on a particular route of an artery were based
on statistical time-series models, including AutoRegressive
Integrated Moving Average (ARIMA). However, their limi-
tations in capturing complex, non-linear spatial and temporal
dependencies led to the use of machine learning and, followed
by deep learning Techniques [6], [7].

Based on the Recurrent Neural Networks (RNNs) partic-
ularly Long Short-Term Memory(LSTM) and Gated Recur-
rent Unit (GRU) networks, nowadays it is quite a common
approach to predict traffic in short-term [6], [7]. These ar-
chitectures are excellent at learning historical patterns from
vast datasets, effectively modeling the day-to-day traffic flow
of urban traffic. Along with the new developments in graph
neural networks and spatio-temporal models, the prediction
capabilities have also been enhanced recently [16]–[20]. While
accurate under normal conditions, these models share two key
weaknesses. First, they are black boxes that provide numerical
output without semantic context. Second, their forecasting
capability is reduced considerably in the cases of high-impact
events, including the disasters caused by climate. They can
predict a traffic jam, but cannot reason about its cause or
implications.

B. Generative AI for Transportation Systems

The arrival of generative AI, particularly LLMs, marks a
major shift from numerical prediction to semantic reason-
ing. Early explorations have begun to use LLMs as high-
level decision-making brains for autonomous systems or as
sophisticated world models for traffic simulation [21], [22].
These models are able to comprehend unstructured data (such
as weather reports) and relate with structured data (such as
traffic flow) and produce Decision Support.

However, as highlighted in Section I, the direct application
of foundation-scale LLMs in real-time mobility systems is of-
ten not practical [10], [11]. There is a trade-off between going
with large models for advanced reasoning, which comes with
the cost of the computational resources that is required. As
summarized in Table I, generative models introduce the crucial
element of semantic understanding, but at a computational cost
that traditional models do not have. This work suggests that
an SLM can optimize this trade-off.

C. The Rise of Small Language Models (SLMs)

In response to the computational requirements of LLMs,
the research community has focused on developing right-sized

2

Submitted to Frontiers in Artificial Intelligence

TABLE I
A COMPARISON OF VARIOUS TECHNIQUES THAT ARE USED IN MOBILITY MODELLING.

Feature Statistical Models Deep Learning Models Generative Models
(e.g., ARIMA) (e.g., LSTM [6]) (e.g., LLM/SLM [11], [12])

Primary Task Prediction Prediction Reasoning
Semantic Understanding None None High
Handling Novel Events Poor Poor to Fair Good (via reasoning)
Interpretability High Low (Black Box) High (Natural Language)
Computational Cost Low Medium Very High

TABLE II
PERFORMANCE AND DEPLOYMENT CHARACTERISTICS OF LLMS VS. SLMS FOR EDGE APPLICATIONS.

Metric Large Language Models (LLMs) [11] Small Language Models (SLMs) [13]

Parameter Size 50B - 1T+ 1B - 10B
Primary Deployment Cloud / Data Center Edge / On-Device
Inference Latency High (seconds per response) Low (ms per token)
Cost per Query High (API-based) Negligible (local)
Offline Capability No Yes
Domain Specialization Generalist Requires specific training
Key Weakness Cost, Latency, Size Lacks broad knowledge

Small Language Models (SLMs). These models, typically with
fewer than 10 billion parameters (e.g., Gemma, Phi-3, Llama 3
8B), are specifically designed to offer a more efficient balance
of performance and size. They are smaller hence are an ideal
size of model capable of running on-device applications and
edge applications, as well as achieve low-latency, low-cost,
and offline-capable inference.

However, SLMs are not a complete solution. On their
own, they often lack the deep, domain-specific knowledge
of their larger counterparts. A general-purpose SLM, when
prompted with highly technical traffic or climate jargon, will
probably fail to produce a useful, accurate response. This
requires domain-specific fine-tuning or, as this paper explores,
complete domain-specific pretraining to give the model the
needed specialized knowledge. The distinction between the
LLM and SLM design philosophies is shown in Table II.

D. Edge AI: Inference in Resource-Constrained Environments

The hypothesis of running an SLM-on-the-Edge (Section
I) is only possible because of recent advances in model
optimization techniques. The techniques are significant in the
adaption of models to execute on constrained resources of
a handle unit of compute and memory, like an in-vehicle
infotainment system or a roadside traffic control unit.

• Quantization: This involves reducing the numerical pre-
cision of a model’s weights and activations. Instead of 32-
bit floating-point (FP32) numbers, models are converted
to use 8-bit integers (INT8) or even 4-bit formats (e.g.,
NF4) [23], [24]. This reduces the memory footprint (by
up to 4x-8x) and speeds up computation.

• Pruning: This procedure includes the detection and elim-
ination of redundant or non-important weights of the
neural network, forming a smaller, sparse model that can

often be trained nearly as quickly as the original, with
little or no loss of accuracy [23].

• Knowledge Distillation: This approach uses a large,
high-performing teacher model (like GPT-4) to train a
smaller student model (like the CM-SLM). The student
model learns from the teacher’s output distribution, effec-
tively transferring knowledge into a more compact form
[25], [26].

The presented framework is based on the extensive use of
quantization to render the CM-SLM to be practically ap-
plicable to inference in real-time. The deployment of these
optimised SLMs on edge devices has also been proved viable
as observed by other recent studies in this area of research
[14], [15].

E. Synthetic Data Generation for Domain-Specific AI

The main barrier to developing a specialized CM-SLM
is the lack of a suitable training corpus. Publicly available
datasets for mobility are extensive but fall into the wrong
categories. As shown in the analysis in Table III, a critical
gap exists. Datasets like UCTB [27] are purely quantitative
time-series data, lacking any semantic or narrative component.
Conversely, autonomous vehicle datasets (e.g., nuScenes) are
vision-centric.

This cold start issue frequently arises in specialized artificial
intelligence. A common solution is the use of synthetic data
generation. Often, this involves using a large teacher LLM
such as GPT-4 to generate thousands of training examples,
a technique that has been used and proven to be effective
in various domains [28], [29]. However, this approach can
be costly and risks contaminating the student model with the
teacher’s natural biases. The alternative looked at in this paper
is the use of a programmatic, simulation-based pipeline to

3

Submitted to Frontiers in Artificial Intelligence

TABLE III
ANALYSIS OF EXISTING DATASETS FOR TRAINING MOBILITY-FOCUSED LANGUAGE MODELS.

Dataset Data Type Key Limitation for this Work

UCTB [27] Quantitative Time-Series Lacks all semantic/narrative context.
nuScenes / Waymo Lidar, Camera, Radar Vision-centric; not text-based.
General Text (e.g., C4) Web Scrape Lacks domain jargon; uncurated.
CMNC (Proposed) Synthetic Narratives Purpose-built for semantic reasoning.

generate a corpus. This method offers good control over data
diversity, structure, and factual grounding, making sure the
final dataset is well suited for the final task. Real-time decision
support systems must integrate human-machine interfaces to
ensure operator trust [30]. Comprehensive reviews of synthetic
data methodologies [28], [29] highlight best practices for data
quality and domain specificity.

F. Research Gap and Problem Formulation

The literature review shows a clear research gap with several
parts.

1) Traditional mobility models (LSTMs) can predict num-
bers but cannot reason.

2) Large Language Models (LLMs) have good reasoning
but are too large and slow for real-time, on-device
deployment.

3) Small Language Models (SLMs) are the right size but
lack the specialized, domain-specific data to be effective
in this niche.

4) While techniques for synthetic data and model optimiza-
tion exist, they have not been combined into a single,
working system to solve this specific climate-mobility
challenge.

Therefore, a clear need exists for a complete system that
includes: (1) a novel, large-scale, domain-specific narrative
corpus for climate-mobility events, and (2) a specialized SLM
trained on this corpus, optimized via techniques like quantiza-
tion, to provide real-time, on-device semantic reasoning. This
paper directly addresses this complex gap.

III. SYSTEM ARCHITECTURE

The system is designed to provide clear, useful information
to an operator during a crisis, as illustrated in the use-case
scenario in Figure 1. To address the research gap identified in
Section II-F, a four-layer system is proposed. This architecture
manages the full data lifecycle, from the first simulation to
final on-device inference. The system is divided into logical
components, each handling a different task: data intake, offline
corpus generation, model training, or real-time deployment.
The complete data flow and interaction between these layers
are shown in Figure 2.

A. High-Level Framework Overview

The proposed system works in two distinct phases: an
offline development phase (Layers 2 and 3) and a real-time
deployment phase (Layers 1 and 4).

Heavy snowfall is causing
an 80% transit shutdown.
Extreme safety risk due to
impassable roads and
freezing temperatures.

Weather: Heavy Snowfall  
(Zone B, all major routes blocked)

Traffic: Transit Shutdown on all

Route Status: Critical

System Overview Display

Emergency Services were
notified of the flood risk
due to melting snow areas.

Public transit suspended.
Bus 12 was rerouted to a
different junction to avoid
being caught in a closed
road due to snow.

What is the best course
of action I should take
for better safety?

Fig. 1. A use-case scenario illustrating the proposed system’s goal: providing
real-time, natural language interaction and actionable insights on an edge
device during a climate-induced mobility disruption.

In the offline phase, raw data is collected and used as the
basis for the simulation. This simulation (Layer 2) generates
the 1 million+ entry CMNC, which is then used to train the
CM-SLM from scratch and optimize it via quantization (Layer
3).

In the real-time phase, the lightweight, quantized SLM
is deployed onto an edge device (Layer 4), which receives
live data (Layer 1) from its environment, processes it using
the SLM, and generates actionable, human readable alerts to
support immediate decision making.

B. Layer 1: Real-Time Data Ingestion

This layer represents the real-time data sources available
to the deployed edge device. It is not used for training
but provides the live inputs for inference. These inputs are
assumed to be simple, structured data points, such as:

• Weather Data: Sourced from a local sensor or a weather
API (e.g., ‘”temp”: -2.5, ”event”: ”snow”, ”rate mmhr”:
10‘).

4

Submitted to Frontiers in Artificial Intelligence

Fig. 2. High-level system architecture, demonstrating the distinct offline (development) and real-time (deployment) phases. The Corpus Generation Engine
and Model Training are computationally heavy, one-time tasks. The resulting quantized SLM is lightweight and designed for efficient inference on an edge
device, which ingests live data to produce alerts.

• Traffic Data: Sourced from local road sensors, GPS,
or a municipal API (e.g., ‘”road id”: ”I-95-NB”,
”avg speed kph”: 15, ”status”: ”anomaly”‘).

This raw data provides the prompt that is fed into the deployed
SLM for analysis.

C. Layer 2: Offline Corpus Generation Engine

This is the core of the data generation pipeline and is
explained further in Section IV. This layer is responsible
for creating the new CMNC. It takes foundational real-world
data (e.g., historical traffic flow from the UCTB [22], climate
records) and uses them as the statistical basis for a complex
simulation. This engine programmatically generates realistic,
time-series anomaly data and then connects this quantitative
data to qualitative, human-readable narratives. The output is a
text-based, instruction-style dataset with over 1 million entries
formatted specifically for training the CM-SLM.

D. Layer 3: Model Training and Optimization

This layer performs the computationally heavy task of
model creation. The 1M+ entry CMNC from Layer 2 is used as
the sole training dataset. The 270-million parameter Gemma-
based model is trained from scratch on this corpus. This
domain-specific pretraining makes sure the model learns the
specific vocabulary, context, and cause-and-effect relationships
of the climate-mobility domain.

After training, the optimization step is performed. The
model’s weights, which is stored in 32-bit floating-point

(FP32) precision, undergo 8-bit quantization (INT8). This pro-
cess, discussed in Section II-D, reduces the model’s memory
footprint by nearly 4x and greatly speeds up its inference speed
on compatible edge hardware. The final output of this layer is
the lightweight, optimized CM-SLM, ready for deployment.

E. Layer 4: On-Device Deployment and Inference

This final layer represents the end user of the framework.
The optimized CM-SLM from Layer 3 is loaded onto a
resource-constrained edge device (e.g., an in-vehicle computer
or a traffic management hub). This device operates in real-
time, receiving live data feeds from Layer 1.

When a new piece of data arrives (e.g., an anomaly trigger),
it is formatted into a prompt and fed to the local CM-SLM.
The SLM performs inference a process that takes milliseconds
and generates a human-readable text output.This output text
summarises the circumstance, evaluates the probable impact,
and gives the decision support. This output is then fed into
the downstream algorithms (detailed in Section IV) to create
structured alerts for the human operator or an automated
system.

IV. METHODOLOGY

The framework’s success depends on two core components:
a very specialized training corpus and an efficient model
architecture. This section explains the new simulation and data
generation pipeline, the architecture of the ClimateMobility-
Small Language Model (CM-SLM), and the set of downstream

5

Submitted to Frontiers in Artificial Intelligence

algorithms that convert the model’s output into practical, real-
world actions.

A. The Climate-Mobility Narrative Corpus (CMNC)

Training a robust, domain-specific language model requires
a large-scale, high-quality corpus. As our analysis established
(Table III), no such public corpus exists for the climate-
mobility domain. So, the first major contribution of this
work is creating the Climate-Mobility Narrative Corpus
(CMNC), a synthetic dataset of over 1 million text-based
entries. The generation of this corpus was a multi-stage
process.

1) Data Sourcing and Preprocessing: The simulation was
not built in isolation. To base the synthetic data on real-
ity, foundational statistics were taken from real-world public
datasets. This included historical traffic flow patterns from the
UCTB repository [22] and historical weather data from NOAA
repositories. This data was not used directly but was analyzed
to extract key parameters (e.g., mean/variance of rush hour
traffic, typical duration of a snow event) which were then used
to set the parameters for the simulation engine.

2) Quantitative Anomaly Modeling: A random noise gen-
erator is not enough to model the complex dynamics of the
real-world traffic disruption. To create a difficult and realistic
simulation, the disruption score D(t) for a given road segment
at time t was modelled as a combination of multiple compo-
nents. This approach, inspired by complex signal modelling in
other domains, is described in Equation 1.

D(t) = B(t) + E(c, dt) +Nstructured(t) (1)

Where each component is defined as:
• B(t) (Baseline Traffic): This component models the

predictable 24-hour diurnal cycle of urban traffic. This
component is represented as a sum of sinusoidal functions
that mirror the natural flow of morning or evening rush
hours.

• E(c, dt) (Event Impact): This is the core non-linear
event function. It models the impact of a specific climate
event c (e.g., flood, snow) over its duration dt. it is
modelled using a logistic function to simulate the gradual
onset, peak disruption, and slower recovery phase of a
major event.

• N structured(t) (Structured Noise): This component
injects realistic, short-term volatility. It is a mix of several
noise types, including periodic high-magnitude spikes
(simulating random accidents), baseline sensor noise, and
a drifting component (simulating sensor degradation).

By systematically varying the parameters of Equation 1,
the engine generated the large time-series dataset. Each event
consisted of the quantitative disruption score D(t) and the set
of causal parameters {c, dt} that produced it.

3) The Narrative Synthesis Engine: The next step was to
turn this quantitative time-series data into a qualitative, text-
based training corpus. This was achieved using the Narrative

Algorithm 1 The Narrative Synthesis Engine
Require: Simulated event S = {D(t), c, dt, location}
Require: Template Database T = {Tsnow, Tflood, . . . }
Require: Detail Database D = {streets, vehicles, . . . }
Ensure: A unique narrative entry (prompt, response)

1: // 1. Select Template based on Event
2: event template←
3: SelectTemplate(T ,S.c)
4: // 2. Extract Key Quantitative Data
5: severity ← CalculateSeverity(D(t))
6: duration text← FormatDuration(S.dt)
7: // 3. Create the Prompt (Input for SLM)
8: prompt← GeneratePrompt(S, severity)
9: // e.g., ”EVENT: snow, LOCATION: I-95, SEVERITY: critical”

10: // 4. Populate Narrative (Output for SLM)
11: narrative← event template
12: narrative←
13: ReplaceToken(narrative, ”[SEVERITY]”, severity)
14: narrative←
15: ReplaceToken(narrative, ”[LOCATION]”,S.location)
16: narrative←
17: ReplaceToken(narrative, ”[DURATION]”, duration text)
18: // 5. Add Unique Details to Prevent Overfitting
19: street← RandomSample(D.streets)
20: vehicle← RandomSample(D.vehicles)
21: narrative← AddDetail(narrative, street, vehicle)
22: // e.g., ”I-95 is blocked near the Main St exit. A snowplow”
23: return (prompt, narrative)

Synthesis Engine, a programmatic pipeline shown in Algo-
rithm 1.

This engine uses an advanced templating system with over
25 unique narrative structures (e.g., News Bulletin, Incident
Report, Public Safety Alert). It maps the quantitative data
from the simulation into these templates. For example, a high
D(t) value combined with the event parameter c = ”snow”
would be matched to a Snowstorm Alert template. The engine
then fills the template with precise, randomised information to
generate the required human-readable narrative.

4) Corpus Validation and Quality Assurance: A synthetic
corpus can be erroneous or not diverse. This was avoided by
using a two-step process of validation. To check on the length
of tokens, eliminate duplicates, and also check grammatical
correctness, automated checks were first done on the corpus
of 1 million+ entries. Second, the logical consistency and the
naturalness of the generated narratives were manually checked
through a random sample of 1,000 entries, which were checked
by human reviewers. This feedback loop was used to improve
the templates in Algorithm 1 before the final corpus was
generated.

B. The ClimateMobility-SLM (CM-SLM)

The second core component is the Small Language Model
(SLM) itself. from the base architecture to the attention
mechanisms, were made to balance reasoning capabilities with
the strict efficiency limits of edge deployment.

1) Base Architecture: The CM-SLM is a 270-million pa-
rameter decoder only transformer model, based on the Gemma
270M architecture [13], as illustrated in Figure 3. This size was

6

Submitted to Frontiers in Artificial Intelligence

INPUT PROCESSOR

X18

OUTPUT

Token ID Embeddings RMS Normalisation RMS Normalisation

Output Layer

RMS Normalisation

RMS Normalisation

Sliding
Window

Multi-Query
Attention

RoPE + QK
Normalisation

RMS Normalisation

Feed Forward Neural Network

Fig. 3. Architecture diagram of the CM-SLM, illustrating the complete data
flow. The input embeddings, 18 transformer blocks, and final output layer are
all shown. Each block is equipped with RMS Normalisation, Sliding Window
Attention, and a Feed Forward Network.

specifically chosen as it represents a good trade-off between
model expressiveness and the memory footprint, making it a
practical candidate for on-device inference. The model uses
18 transformer blocks (or layers) and an embedding dimension
optimized for this scale. It was trained from scratch exclusively
on the CMNC, allowing its limited parameter budget to be
fully dedicated to learning the climate-mobility domain.

2) Token Embeddings: It starts by partitioning the input
text prompt into an array of tokens through a subword-level
tokenizer, namely, Byte Pair Encoding (BPE) and a vocabulary
size of 50,257. These tokens are then encoded into high-
dimensional vectors to encode semantic meaning into them
and are inputted into the transformer blocks.

3) RMS Normalization: To achieve better numerical stabil-
ity and faster computation, the model employs Root Mean
Square (RMS) Normalization in place of traditional Layer
Normalization. Given an input vector x ∈ Rd and learnable
parameters, the normalization is computed. The variance is
first computed as the mean of squared elements, as shown in
Equation 2:

var(x) =
1

d

d∑
i=1

x2
i (2)

The Root Mean Square factor, defined in Equation 3 with an
epsilon ϵ for numerical stability (typically 10−8), is:

rms(x) =
√

var(x) + ϵ (3)

Each element is then normalized as shown in Equation 4:

x̂i =
xi

rms(x)
(4)

The

storm

caused

the

commute

to

disrupt

many

cities

This is a “Single head”

X

(9, 8)

wq

(8, 4)

Query
Vectors

(9, 4)

Key
Vectors

(9, 4)

Value
Vectors

(9, 4)

wk

(8, 4)

wv

(8, 4)

Fig. 4. Computation method for single-head attention, showing the transfor-
mation of input tokens (X) using query (Q), key (K), and value (V) projections.

Keys

weight

matrix

Value

weight

matrix

Keys

matrix

Value

matrix

Wk1

(8,2)

Wk2

(8,2)

Wk3

(8,2)

Wk4

(8,2) k1

(5,2)
k2

(5,2)
k3

(5,2)
k4

(5,2)

v1

(5,2)

v2

(5,2)

v3

(5,2)

v4

(5,2)

Wv1

(8,2)

Wv2

(8,2)

Wv3

(8,2)

Wv4

(8,2)

Head

1

Head

2

Head

3

Head

4

Head

1

Head

2

Head

3

Head

4

Heavy

snow

blocked

the

roads

Input embedding matrix

Queries Matrix

Q1

(5, 2)

Q2

(5, 2)

Q3

(5, 2)

Q4

(5, 2)

Fig. 5. The computation for Multi-Head Attention (MHA), which uses
separate Key (Wk1, Wk2...) and Value (Wv1, Wv2...) weight matrices for
each head.

Finally, the normalized vector is scaled using a learnable
parameter scalei, following the Gemma-style formulation in
Equation 5:

yi = x̂i · (1 + scalei) (5)

This approach is computationally less expensive than standard
LayerNorm as it avoids recentering the data with a mean,
which leads to faster inference.

4) Multi-Query Attention (MQA): To significantly reduce
the memory bandwidth needs during inference. The model is
based on Multi-Query Attention (MQA) as opposed to Multi-
Head Attention (MHA).

A standard attention technique maps the input embedding
(X) into Query (Q), Key (K), and Value (V) vectors using
separate weight matrices (Wq, Wk, Wv). This concept for a
single head is shown in Figure 4.

In MHA, this is done in parallel for multiple heads, and
each head has its own unique weight matrices (Wk1, Wk2...
and Wv1, Wv2...), as illustrated in Figure 5. This is effective
but computationally demanding.

In MQA, as shown conceptually in Figure 6, all attention
heads share a single set of Key (K) and Value (V) projection
matrices, while each head retains its own unique Query (Q)
matrix. This greatly reduces the size of the Key-Value (KV)

7

Submitted to Frontiers in Artificial Intelligence

Heavy

snow

blocked

the

roads

Keys

weight

matrix

Value

weight

matrix

Keys

matrix

Value

matrix

Input embedding matrix

Queries Matrix

Q1

(5, 2)

Shared Wk

(8,2)

Shared Wv

(8,2)

Shared k

(5,2)

Shared V

(5,2)

Head

1

Head

2

Head

3

Head

4

Head

1

Head

2

Head

3

Head

4

Q2

(5, 2)

Q3

(5, 2)

Q4

(5, 2)

Fig. 6. Multi-Query Attention (MQA) computation. Unlike Multi-Head
Attention (Fig. 5), all heads share a single Key (Shared K) and Value (Shared
V) matrix, reducing memory and computational cost.

Mask Global (Future is masked: j > I)

(Cannot peak into the future)

Full Attention causal mask

local sliding window (Future or far past)

(Cannot peak into the future and
not too far back into the past)

Sliding Attention causal mask

0

1

2

3

4

5

6

7

i\j 0 1 2 3 4 5 6 7

0

1

2

3

4

5

6

7

i\j 0 1 2 3 4 5 6 7

Fig. 7. A comparison between a Full Attention causal mask (left), permitting
each token to attend to all predecessors, and a Sliding Window Attention mask
(right), which restricts attention to the recent past.

cache, a major consumer of memory during text generation,
and speeds up computation with almost no noticeable loss in
model quality for this task.

5) Sliding Window Attention: The standard transformer
architecture uses full attention, where every token attends to
every previous token. This creates a cost in computation and
memory that scales quadratically (O(n2)) with the sequence
length n. For a 270M model, a more efficient method is
needed.

The CM-SLM uses Sliding Window Attention (SWA), as
shown in Figure 7. In this mechanism, each token only attends
to a fixed-size window of w preceding tokens, where w = 512.
This reduces the computational complexity of the model from
O(n2) to O(n · w). This optimization is key for processing
longer narratives on edge devices without major slowdowns.
Out of the 18 transformer blocks, 15 use SWA, while 3 are
full-attention blocks to keep some global context ability.

6) Positional Encoding (RoPE): To tell the model the order
of tokens, Rotary Position Embeddings (RoPE) are used. RoPE
rotates the query and key vectors based on their position. The
rotation angle θ for a vector at position p and index i is defined
by Equation 6:

θ = ωip where ωi =
1

100002i/d
(6)

Algorithm 2 Real-Time Alert Generation and Prioritization
Require: Raw text Tslm from CM-SLM
Require: Keyword maps Msev,Mloc,Mimp

Ensure: Structured JSON alert object Jalert
1: Jalert ← {}
2: Tlower ← ToLower(Tslm)
3: // 1. Assign Severity
4: if Contains(Tlower,Msev.”critical”) then
5: Jalert.severity← ”CRITICAL”
6: elsif Contains(Tlower,Msev.”major”) then
7: Jalert.severity← ”HIGH”
8: else
9: Jalert.severity← ”INFO”

10: end if
11: // 2. Extract Key Information (Example)
12: Jalert.location← ExtractRegex(Tslm,Mloc)
13: Jalert.impact← ExtractRegex(Tslm,Mimp)
14: Jalert.advice← ExtractAdvice(Tslm)
15: Jalert.timestamp← CurrentTime()
16: return Jalert

Here, d denotes the dimensionality of the embedding vector.
This method has shown better performance in maintaining rel-
ative positional information and allows for better performance
on sequence lengths not seen during training.

7) Model Optimization for Edge Deployment: The final
step is model optimization. Once FP32 model is fully trained,
8-bit post-training quantization (INT8) is applied to it. This
converts the model’s 32-bit floating-point weights to 8-bit
integers. As discussed in Section II-D, this step is vital for
the target application, as it reduces the model’s storage and
memory footprint by approximately 4x (e.g., from ∼1.1 GB
to ∼270 MB) and accelerates inference speed, especially on
CPUs or specialized edge hardware.

C. Downstream Decision-Support Algorithms

The text output from the CM-SLM is a human-readable
narrative. To make this narrative useful for programs, a set of
three downstream algorithms processes this text and translates
it into structured data for an application or dashboard.

1) Real-Time Alert Generation: The first algorithm, de-
tailed in Algorithm 2, is responsible for analyzing the SLM’s
free-text response. It uses preset keywords and regular ex-
pressions to extract key-value pairs i.e IMPACT, LOCATION,
and ADVICE, from the output. It also assigns a severity level
based on keywords found in the text (e.g., critical, major →
”SEVERITY CRITICAL”). The output is a structured JSON
object that is used to map to the dashboard.

2) Adaptive Rerouting Heuristic: The structured alert from
Algorithm 2 can then be given to a routing system. Algorithm
3 shows a simple method for this. It takes the alert and a map
of the road network. If the alert is of ‘CRITICAL‘ severity, it
strongly penalizes or removes the affected road sections from
the navigation graph. For ‘HIGH‘ severity, it might only add
a large time penalty. This allows a GPS or traffic management

8

Submitted to Frontiers in Artificial Intelligence

Algorithm 3 Adaptive Rerouting Heuristic
Require: JSON alert Jalert
Require: Road network graph G = (V,E)
Ensure: Updated graph G′

1: G′ ← G
2: affected segment← Jalert.location
3: edge← FindEdge(G′, affected segment)
4: switch Jalert.severity do
5: case ”CRITICAL”:
6: // Mark edge as unusable
7: G′.RemoveEdge(edge)
8: case ”HIGH”:
9: // Add severe time penalty

10: edge.weight← edge.weight× 10
11: case ”INFO”:
12: // Add minor time penalty
13: edge.weight← edge.weight× 2
14: end switch
15: return G′

Algorithm 4 Dynamic Anomaly Trigger
Require: New data point xt

Require: Rolling stats µroll, σroll

Require: Weather data Wdata

Require: Base threshold Thbase (e.g., 3.0)
Ensure: Boolean decision ‘TriggerSLM‘

1: // 1. Calculate Anomaly Score
2: score← |(xt − µroll)/σroll|
3: // 2. Adjust Threshold Dynamically
4: Thdynamic ← Thbase

5: if Wdata.event ̸= ”NONE” then
6: // Increase sensitivity during weather events
7: Thdynamic ← Thbase × 0.5
8: end if
9: // 3. Make Trigger Decision

10: if score > Thdynamic then
11: return TRUE
12: else
13: return FALSE
14: end if

system to dynamically change traffic routes based on the
semantic meaning provided by the SLM.

3) Dynamic Anomaly Trigger: Finally, the system must
decide when to ask the SLM. Checking every data point would
be inefficient. Algorithm 4 suggests a dynamic threshold to
manage this. It keeps a rolling statistical baseline of mean
and standard deviation for the input traffic data. It also
calculates the anomaly score for new data points. Importantly,
the threshold to trigger an alert is not fixed; it is made more
sensitive if external data reports an active climate event. This
stops alert fatigue during normal conditions but makes it more
sensitive when disruptions are likely.

V. EXPERIMENTAL SETUP

This section provides the setup used for training, optimising,
and evaluating the ClimateMobility-Small Language Model
(CM-SLM). All choices, from dataset splits to evaluation
metrics, were designed for a fair, repeatable, and thorough
comparison against baseline models, with a specific focus on
the end-goal of real-time edge deployment.

A. Dataset and Baselines

1) CMNC Dataset Splits and Statistics: The 1 million
entry Climate-Mobility Narrative Corpus (CMNC), generated
as described in Section IV-A, was the dataset used for training
and evaluation. The dataset was divided into three standard
splits: 80% (800,000 entries) were allocated to the training set,
10% (100,000 entries) to the validation set, and the remaining
10% (100,000 entries) to the test set.

To assure statistical strength and consider random varia-
tions, all training and evaluation were performed 10 times
using different random seeds values. The validation set was
used only for hyperparameter tuning and selecting the best
model checkpoint, while the test set was kept for the final
performance report in Section VI.

2) Baseline Model Implementation: To provide a fair com-
parison, the CM-SLM was benchmarked against other well-
known, open-source SLMs from the original paper, including
SmolLM2 (360M), Qwen 2.5 (0.5B), and SmolLM2 (135M).

An important difference must be noted: the CM-SLM was
trained from scratch on the CMNC.The baseline models,
which had already been trained on generic web-scale text, were
fine-tuned using the CMNC. All models were trained/fine-
tuned for the same number of steps on the same training set,
and the checkpoint with the lowest validation perplexity was
chosen.

B. Evaluation Metrics

To assess the model’s capabilities, a set of language quality
and performance measurements was used, such as

1) Language Quality Metrics:

• Perplexity (PPL): This is the main metric for language
model quality. It measures how surprised a model is
by the test set. A low perplexity score means that the
predicted words closely match the ground-truth text, in-
dicating a better understanding of the domain’s language
and patterns.

• BLEU (Bilingual Evaluation Understudy): A
precision-based metric that measures the n-gram overlap
between the generated and reference texts. It is a good
indicator of how well the sentences flow and their
accuracy.

• ROUGE-L (Recall-Oriented Understudy): A metric
based on recall that finds the longest common subse-
quence (LCS) between the generated and reference texts.
It is effective at evaluating a model’s ability to get the
main points of the target response.

9

Submitted to Frontiers in Artificial Intelligence

TABLE IV
HYPERPARAMETER SEARCH SPACE FOR CM-SLM TRAINING.

Hyperparameter Distribution Search Range

Learning Rate Log-Uniform [1× 10−5, 1× 10−3]
Weight Decay Uniform [0.0, 0.1]
Batch Size Choice [16, 32, 64]
Dropout Rate Uniform [0.05, 0.2]
Warmup Steps Integer [500, 1000, 2000]

2) Performance Metrics:
• Inference Speed (ms/token): This measures the time

taken for the model to generate a single token on the
target edge device. This is a key metric for real-time
applications, as a high latency (slow response) makes a
model not usable for emergency decision support.

• Memory Footprint (MB): This measures the amount of
RAM required by the quantized 8-bit model on the edge
device. Lower values indicate better memory efficiency.

• Power Consumption (W): Average power drawn by the
edge device (Raspberry Pi 5) during sustained model
inference. Low values are better as they show the model’s
efficiency.

• CPU Utilization (%): Average percentage of CPU uti-
lization during inference on the edge device (Raspberry
Pi 5). Low values indicate less strain on the processor.

The mean and standard deviation for all performance metrics
are reported across the 10 independent runs.

C. Hardware Environments

To show the actual development process, two separate
hardware environments were used.

1) Training Environment: All model training, fine-tuning,
and hyperparameter searches were run on a Kaggle notebook
with NVIDIA A100 (80GB) GPU environment.

2) Simulated Edge Environment: All edge performance
metrics (Inference Speed, Memory Footprint, Power Con-
sumption, and CPU Utilization) were measured on a resource-
constrained edge device: a Raspberry Pi 5, 8GB RAM
model. Measurements were taken under controlled conditions
to ensure realistic performance.

D. Model Architecture and Training Protocol

1) CM-SLM Final Architecture: As detailed in Section
IV-B, the final CM-SLM architecture is an 18-layer decoder-
only transformer with an embedding dimension of 1024
(standard for Gemma 270M), Multi-Query Attention, Sliding
Window Attention, and RoPE positional embeddings.

2) Hyperparameter Tuning: An automated hyperparameter
search was performed to find the optimal value. The search
methodically explored a preset range of values for the most
critical parameters. The best performing combination, as mea-
sured by the lowest perplexity on the validation set, was then
selected for the final, full duration training run. The search
space for this optimization is defined in Table IV. The final,

optimal parameters chosen by this process are presented in
Section VI-A.

VI. RESULTS AND DISCUSSION

The analysis first reports the final model configuration, then
provides a quantitative comparison against baseline models. It
then presents a qualitative analysis of the model’s outputs and
a series of ablation studies to validate the core hypotheses of
this work. All results are reported as the mean ± standard
deviation across the 10 independent runs, as described in
Section V-A1, to ensure statistical correctness.

A. Model Configuration and Tuning Results

The hyperparameter search detailed in Section V-D2 was
performed, and the optimal value was selected based on the
lowest perplexity achieved on the validation set. The final,
best-performing hyperparameters used to train the CM-SLM
for all 10 runs are presented in Table V.

The sensitivity check that led to choosing the optimal 3 ×
10−4 learning rate is shown in Figure 8. This analysis confirms
the choice by showing a clear spot where a lower or higher
rate would worsen model performance.

1e-05 5e-05 0.0001 0.0003 0.0005 0.001
Learning Rate (Log Scale)

2.8

3.0

3.2

3.4

3.6

3.8

4.0

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (L
ow

er
 is

 B
et

te
r)

Hyperparameter Sensitivity: Learning Rate
Validation Perplexity
Optimal: 0.0003 (PPL: 2.84)

Fig. 8. Hyperparameter sensitivity analysis for the learning rate, plotting
validation perplexity against a log-scale of learning rates. The 3× 10−4 rate
chosen (Table V) is validated as the optimal choice.

B. Quantitative Performance Analysis

The main evaluation compared the CM-SLM (trained from
scratch) against the fine-tuned baseline models. The full results
for both language quality and edge performance are shown in
Table VI.

10

Submitted to Frontiers in Artificial Intelligence

TABLE V
OPTIMAL HYPERPARAMETER VALUES FOR CM-SLM TRAINING, SELECTED VIA THE TUNING PROCESS.

Hyperparameter Value Rationale

Learning Rate 3× 10−4 A common, effective rate for AdamW with good stability.
Weight Decay 0.05 Provided mild regularization, preventing overfitting.
Batch Size 32 Balanced training speed with gradient stability.
Dropout Rate 0.1 Standard dropout for a model of this size.
Warmup Steps 1000 Allowed the model to stabilize before converging.

TABLE VI
COMPLETE QUANTITATIVE EVALUATION (MEAN ± STD. DEV. OVER 10 RUNS). LOWER IS BETTER FOR PPL, MEMORY, SPEED, POWER, AND CPU UTIL.

HIGHER IS BETTER FOR BLEU AND ROUGE-L.

Metric Category Model
Language Quality Edge Performance (on Raspberry Pi 5)

PPL ↓ BLEU ↑ Memory (MB) ↓ Speed (ms/token) ↓ Power (W) ↓ CPU Util (%) ↓

Models

CM-SLM (270M) 2.84 ± 0.05 0.68 ± 0.02 273 ± 2 45.2 ± 3.1 4.5 ± 0.3 40 ± 4
Qwen 2.5 (0.5B) 4.12 ± 0.10 0.55 ± 0.03 505 ± 4 78.5 ± 4.5 6.8 ± 0.5 65 ± 6
SmolLM2 (360M) 4.95 ± 0.12 0.51 ± 0.03 364 ± 3 66.1 ± 3.9 5.5 ± 0.4 55 ± 5
SmolLM2 (135M) 6.31 ± 0.15 0.42 ± 0.04 138 ± 2 28.3 ± 2.5 3.2 ± 0.2 30 ± 3

The results clearly show the advantage of the domain-
specific pretraining. The CM-SLM achieves a significantly
lower perplexity (2.84) than all baselines, demonstrating a
much better understanding of the CMNC’s language and
structure. This is true even though the Qwen model has
nearly double the parameters. The fine-tuned generalist models
(Qwen, SmolLM2) could not adapt as well, resulting in higher
perplexity.

Furthermore, the CM-SLM finds a great balance in per-
formance. It is significantly faster and has a smaller memory
footprint than the larger Qwen and SmolLM2 (360M) models.
While the SmolLM2 (135M) is the smallest and fastest, its
language quality (PPL 6.31) is much worse, making it not
good for this task.

Figures 9 and 11 statistically confirm the training process,
confirming the thoroughness of the 10-run analysis; they show
the mean performance (represented by the line) bounded by
a ±1 standard deviation (the shaded region). The results are
clear: the CM-SLM is not only faster (Fig. 9) but also achieves
a higher BLEU score (Fig. 11), and is also significantly more
stable and steady in its convergence, as shown by its smaller
confidence band compared to the baselines. A complete view
of the final model’s trade-offs is presented in the radar plot
(Figure 10), which visually shows the CM-SLM’s better
balanced profile.

C. Qualitative Analysis

While quantitative metrics are essential, qualitative analysis
is needed to check the usefulness of the generated text. Table
VII presents several example prompts from the held-out test
set and the text that goes with it generated by the CM-SLM
and the next-best baseline, Qwen 0.5B.

The examples show that both models can identify the event,
but the CM-SLM’s responses are more specific, useful, and

0 5000 10000 15000 20000 25000 30000 35000 40000
Steps (in 1000)

20

25

30

35

40

45
Ti

m
e

(s
ec

on
ds

)

Model (Mean ± 1 Std. Dev. over 10 Runs)
CM-SLM 270M
SmolLM2 360M
Qwen 2.5 0.5B
SmolLM2 135M

Fig. 9. Statistical analysis of training time per 1000 steps over 10 independent
runs, the mean (solid line) and the ±1 standard deviation interval (shaded
area). This validates that the CM-SLM is not only the fastest but also the
most stable and consistent during training.

use the right domain terms. The baseline model’s text is often
general or a bit unclear, which shows its general-purpose
pretraining.

D. Ablation Studies

To further check the framework, three ablation studies were
conducted to separate the effect of (1) the corpus size, (2) key
architectural components, and (3) model quantization.

1) Impact of Corpus Size: A main hypothesis of this work
is that a large, domain-specific corpus is vital. To test this,
again the CM-SLM was trained from scratch on smaller
subsets of the CMNC: 100,000 and 500,000 entries. The
validation perplexity was then compared to the model trained
on the full 1,000,000-entry corpus.

Results, presented in Figure 12. The model also becomes
less perplexed when the corpus size is larger, decreasing to

11

Submitted to Frontiers in Artificial Intelligence

TABLE VII
QUALITATIVE COMPARISON OF GENERATED RESPONSES FROM THE TEST DATASET.

Test Set Prompt CM-SLM (270M) Response Qwen 0.5B (Baseline) Response

EVENT: flood, LOCATION:
I-80, SEVERITY: critical,
TREND: rising

ALERT: Critical flash flood on I-80. All lanes are
impassable. Water is rising. ADVICE: Dispatch high-
clearance vehicles only. Reroute all other traffic to
Route 30. This is a life-threatening situation.

Flood event on I-80. Very bad. The road is closed. Cars
should turn around. Water is high.

EVENT: snow, LOCATION:
Main St, SEVERITY: high,
WIND: 40kph

ALERT: High-impact snow event on Main St. Heavy
accumulation and 40kph winds causing whiteout con-
ditions. ADVICE: Advise No Travel order. Dispatch
municipal snowplows and salt trucks immediately.

Snow on Main St. It is windy. Bad to drive. Tell people
to stop. Call the snow trucks.

EVENT: accident, LOCATION:
US-101, SEVERITY:
moderate, DETAIL: 3-car

ALERT: Moderate 3-car collision reported on US-101.
Right lane blocked. ADVICE: Expect major delays.
Dispatch EMS and law enforcement. Suggest merging
left.

Accident. US-101. 3 cars. Road is bad. Traffic will be
slow. Send help.

0

20

40

60

80

100

PPL
(Lower is Better)

BLEU
(Higher is Better)

Memory (MB)
(Lower is Better)

Speed (ms/token)
(Lower is Better)

Power (W)
(Lower is Better)

CPU Util (%)
(Lower is Better)

CM-SLM (270M)
Qwen 2.5 0.5B
SmolLM2 360M
SmolLM2 135M

Fig. 10. Radar plot visually comparing model trade-offs using key metrics
from Table VI (Raspberry Pi 5 edge performance). Values are scaled 0-100
based on defined maximums. For cost metrics (PPL, Memory, Speed, Power,
CPU), lower scores are better, but for the BLEU score, higher is better.

8.9 (100k) to 4.1 (500k) and eventually 2.84 (1M). This is
reassuring that with the full size of 1 million entry corpus the
rich and varied data required to entrust the model with the
in-depth knowledge of the domain is obtained.

2) Impact of Architectural Components: A main hypoth-
esis of this work is that the specific architectural choices
outlined in Section IV-B, namely Sliding Window Attention
(SWA), Multi-Query Attention (MQA), and Rotary Position
Embeddings (RoPE), are key for balancing performance and
accuracy. To validate this, a component ablation study was
done, presented in Figure 13.

The results clearly support the proposed architecture. Re-
moving SWA (i.e., using full attention) or MQA (i.e., using
standard MHA) badly harms inference speed, making the
model not usable for real-time edge deployment. On the
other hand, removing RoPE in favor of standard positional
embeddings greatly hurts model accuracy, making perplexity
go up. This confirms that the CM-SLM architecture is a go-

0 5000 10000 15000 20000 25000 30000 35000 40000
Training Steps

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

BL
EU

 S
co

re

Model (Mean ± 1 Std. Dev. over 10 Runs)
CM-SLM 270M
SmolLM2 360M
Qwen 2.5 0.5B
SmolLM2 135M

Fig. 11. Statistical analysis of BLEU score convergence over 10 independent
runs, the mean convergence (line) buffered by its ±1 standard deviation
(shaded area). The CM-SLM achieves the highest mean BLEU score and
exhibits the most consistent performance.

to model to achieve the target of low perplexity and high
inference speed.

3) Impact of Model Quantization: The framework uses 8-
bit quantization (INT8) to get edge-level performance. How-
ever, this optimization often lowers model accuracy. An ab-
lation study checked this trade-off. The model was evaluated
in three states: its original 32-bit (FP32) form, 8-bit (INT8)
quantization, and a stronger 4-bit (NF4) quantization.

Figure 14 shows the trade-off between speed and accuracy.
The FP32 model has the best perplexity (2.81) but is the
slowest (120.5 ms/token). The 4-bit model is extremely fast
(25.1 ms/token) but suffers a major loss in quality (PPL 9.75).
The 8-bit model, however, is the ideal choice: it provides a
∼2.6x speedup over the FP32 model with only a very small
1% drop in perplexity (2.84 vs. 2.81). This confirms 8-bit
quantization is the best for this deployment.

E. Discussion of Findings

Overall, the results in Table VI and the ablation studies
(Figures 12, 14, and 13) strongly support the paper’s main
idea. This claim is also supported by the statistical 10-run
analysis (Figures 9 and 11), which shows the steadiness and

12

Submitted to Frontiers in Artificial Intelligence

Corpus	Size	(Thousands	of	Entries)
100 500 1000

Va
lid

at
io
n	
Pe
rp
le
xi
ty

0

2

4

6

8

10

12
Ablation	Study:	Impact	of	Corpus	Size

CM-SLM	(Proposed)
SmolLM2	(135M)

Fig. 12. Ablation study on corpus size. Validation perplexity improves
significantly as the number of training narratives increases, confirming the
value of the 1M entry CMNC.

CM-SLM
(Full

Model)

CM-SLM
w/o

Sliding
Window
(SWA)

CM-SLM
w/o

Multi-Query
(MQA)

CM-SLM
w/o

RoPE

Model Configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

Va
lid

at
io

n
Pe

rp
le

xi
ty

 (
PP

L) 2.8
2.7 2.8

3.2

Architectural Component Ablation Study

0

20

40

60

80

100

120

In
fe

re
nc

e
Sp

ee
d

(m
s/

to
ke

n)

45.2

113.0

81.4

47.5

Perplexity (Lower is Better)
Inference Speed (Lower is Better)

Fig. 13. Architectural component ablation study shows trade-off between
model perplexity and inference speed. Removing SWA or MQA destroys
performance, while removing RoPE destroys accuracy, validating the CM-
SLM’s design.

Inference	Speed	(ms/token)	!
0 20 40 60 80 100 120 140

Pe
rp
le
xi
ty
	!

0

2

4

6

8

10

12
Ablation	Study:	Quantization	Trade-off

FP32	(Baseline)INT8	(Proposed)

NF4

Id
ea
l	P
er
fo
rm
an
ce
	!

Region	!

Fig. 14. Ablation study on model quantization, plotting the trade-off between
inference speed and perplexity.

stability of the CM-SLM. The CM-SLM’s better performance
is not because of a larger parameter count but due to its highly
specialized training. By training from scratch on a million
entry, domain-specific corpus, the model’s 270M parameters
were fully set up to learn the specific language of climate-
mobility, rather than using its ability on general internet
knowledge.

The baseline models, even with fine-tuning, could not get
past their general pretraining. Their poor performance shows
fine-tuning is not enough for niche, high-stakes domains.

Furthermore, the performance analysis in Figure 14 and
Table VI gives a practical plan for deployment. The 8-bit
quantized 270M model gives a good result: its language quality
is good enough to be trusted (PPL 2.84), and its performance
(273 MB, 45 ms/token) is well inside the acceptable limits for
real-world edge devices like the Raspberry Pi 5 used in our
tests.

F. Limitations and Threats to Validity

While rigorous, this study has some limitations.
• Synthetic Data: The main limitation is the 100% man-

made nature of the CMNC. While based on the complex
model from Section IV-A2, it cannot fully get the chaos
of real-world disasters.

13

Submitted to Frontiers in Artificial Intelligence

• Edge Device Performance: While the Raspberry Pi 5
provides a realistic edge environment, measured perfor-
mance could change in a final deployment due to con-
current software processes, specific OS configurations, or
thermal management within an enclosure.

• Single Data Type: The framework is text-only. A real
decision-support system would be better with different
types of inputs, like live traffic camera video or audio
from emergency radios.

G. Future Work

Based on these limits, future work will look at three key
areas.

1) Real World Fine-Tuning: The next step is to collect
a smaller, high-quality dataset of real-world emergency
logs and operator narratives. This dataset will be used
to fine-tune the CM-SLM, connecting the synthetic
pretraining and real-world use.

2) Multi-Modal Integration: Research will look into com-
bining the CM-SLM with a vision model (e.g., CLIP)
to create a multi-modal system that can understand both
text prompts and live camera pictures.

3) Federated Learning: To let the model adapt to new
events and local terminologies without risking privacy,
a federated learning framework will be studied. Like a
fleet of deployed edge devices to work together to fine-
tune the main model.

VII. CONCLUSION

This paper showed a complete framework for developing
and deploying a special Small Language Model (SLM) for
real-time, on-device decision support in climate-induced urban
mobility crises. This work deals with the limits of current
models: traditional forecasting models cannot reason, while
large language models are too slow and heavy for edge
deployment.

The ClimateMobility-SLM (CM-SLM), is a 270M-
parameter model trained from scratch on a new, 1 million-entry
man-made dataset, the Climate-Mobility Narrative Corpus
(CMNC). Generating this corpus was supported by a complex
simulation model to make sure the training data was realistic
and varied.

The test results are clear. The CM-SLM achieves a mean
validation perplexity of 2.84 ± 0.05, doing much better than
fine-tuned baseline models of comparable or larger size. This
confirms that for specific, important areas, domain-specific
pretraining is better than general fine-tuning. Furthermore,
the 8-bit quantized model provides this high-quality reasoning
with a small memory footprint (273 MB) and a fast inference
speed (45.2 ms/token) on a realistic edge device. The ablation
studies confirmed that both the 1 million entry corpus and the
8-bit quantization were key and best design choices.

This study provides a practical plan of a new form of
intelligent, powerful, and effective urban governance system.
This work demonstrates a means of enhancing the safety of
the masses and the efficiency of transportation at a time of

increasing climatic uncertainty by effectively bridging the gap
between large scale reasoning and on-the-ground performance.

REFERENCES

[1] S. A. Markolf, C. Hoehne, A. Fraser, M. V. Chester, and B. S.
Underwood, “Transportation resilience to climate change and extreme
weather events–beyond risk and robustness,” Transport policy, vol. 74,
pp. 174–186, 2019.

[2] D. Touloumidis, M. Madas, V. Zeimpekis, and G. Ayfantopoulou,
“Weather-related disruptions in transportation and logistics: A systematic
literature review and a policy implementation roadmap,” Logistics,
vol. 9, no. 1, p. 32, 2025.

[3] T. V. Ha and M. Arimura, “Mapping urban mobility during extreme
weather events using mobile spatial statistics data,” Transportation
Research Interdisciplinary Perspectives, vol. 33, p. 101609, 2025.

[4] J. Huang, T. Zhang, D. Sun, and H. Wang, “Urban human mobility
changes based on functional areas during extreme rainstorm event: A
case of beijing “23· 7” rainstorm event,” Cities, vol. 163, p. 106003,
2025.

[5] L. Kamalian et al., “Analysis of the impact of climate-driven extreme
weather events on uk train delays using bayesian network approach,”
Reliability Engineering & System Safety, vol. 254, p. 110390, 2025.

[6] B.-L. Ye, M. Zhang, L. Li, C. Liu, and W. Wu, “A survey of traffic
flow prediction methods based on long short-term memory networks,”
IEEE Intelligent Transportation Systems Magazine, vol. 16, no. 5, pp.
87–112, 2024.

[7] P. Redhu, K. Kumar et al., “Short-term traffic flow prediction based
on optimized deep learning neural network: Pso-bi-lstm,” Physica A:
Statistical Mechanics and its Applications, vol. 625, p. 129001, 2023.

[8] Y.-T. Chen, A. Liu, C. Li, S. Li, and X. Yang, “Traffic flow predic-
tion based on spatial-temporal multi factor fusion graph convolutional
networks,” Scientific Reports, vol. 15, no. 1, p. 12612, 2025.

[9] J. Tang, R. Zhu, F. Wu, X. He, J. Huang, X. Zhou, and Y. Sun, “Deep
spatio-temporal dependent convolutional lstm network for traffic flow
prediction,” Scientific Reports, vol. 15, no. 1, p. 11743, 2025.

[10] S. Bhardwaj, P. Singh, and M. K. Pandit, “A survey on the integration
and optimization of large language models in edge computing envi-
ronments,” in 2024 16th International Conference on Computer and
Automation Engineering (ICCAE). IEEE, 2024, pp. 168–172.

[11] S. Ying, Z. Li, and M. Yu, “Beyond words: evaluating large language
models in transportation planning,” Geo-spatial Information Science, pp.
1–23, 2025.

[12] R. Sajja, S. Xiong, O. Mermer, M. Y. Sermet, and I. Demir, “A com-
prehensive bibliometric analysis of large language models in hydrology
and environmental sciences,” 2025.

[13] O. Lacombe, K. Kenealy, K. Black, R. Kumar, F. Visin, and J. Zhang,
“Introducing gemma 3 270m: The compact model for hyper-efficient
ai,” https://developers.googleblog.com/en/introducing-gemma-3-270m/,
2025, google Developers Blog.

[14] S. Jang and R. Morabito, “Edge-first language model inference: Models,
metrics, and tradeoffs,” arXiv preprint arXiv:2505.16508, 2025.

[15] M. R. Islam, N. Dhar, B. Deng, T. N. Nguyen, S. He, and K. Suo,
“Characterizing and understanding the performance of small language
models on edge devices,” in 2024 IEEE International Performance,
Computing, and Communications Conference (IPCCC). IEEE, 2024,
pp. 1–10.

[16] A. Zhang, “Dynamic graph convolutional networks with temporal repre-
sentation learning for traffic flow prediction,” Scientific Reports, vol. 15,
no. 1, p. 17270, 2025.

[17] S. Arunachalam, “Long-term and short-term traffic flow prediction
with different weather conditions using optimized wheel-graph attention
based neural network,” Future Generation Computer Systems, p. 108198,
2025.

[18] H. Xiao, B. Zou, and J. Xiao, “Graph convolution networks based on
adaptive spatiotemporal attention for traffic flow forecasting,” Scientific
Reports, vol. 15, no. 1, p. 8935, 2025.

[19] J. Zhang, Y. Yang, X. Wu, and S. Li, “Spatio-temporal transformer and
graph convolutional networks based traffic flow prediction,” Scientific
Reports, vol. 15, no. 1, p. 24299, 2025.

[20] S. Komarovsky and J. Haddad, “Spatio-temporal graph convolutional
neural network for traffic signal prediction in large-scale urban net-
works,” Transportation Research Interdisciplinary Perspectives, vol. 32,
p. 101482, 2025.

14

Submitted to Frontiers in Artificial Intelligence

[21] N. Maksoud, H. AlJassmi, L. Ali, and A. R. Masoud, “Applications of
large language models and generative ai in transportation: A systematic
review and bibliometric analysis,” Transportation Research Interdisci-
plinary Perspectives, vol. 34, p. 101699, 2025.

[22] R. Zhang, K. Xiong, H. Du, D. Niyato, J. Kang, X. Shen, and H. V. Poor,
“Generative ai-enabled vehicular networks: Fundamentals, framework,
and case study,” IEEE Network, vol. 38, no. 4, pp. 259–267, 2024.

[23] R. D. Rachmanto, Z. Sukma, A. N. Nabhaan, A. Setyanto, T. Jiang,
and I. K. Kim, “Characterizing deep learning model compression with
post-training quantization on accelerated edge devices,” in 2024 IEEE
International Conference on Edge Computing and Communications
(EDGE). IEEE, 2024, pp. 110–120.

[24] C. J. Schaefer, S. Joshi, S. Li, and R. Blazquez, “Edge inference
with fully differentiable quantized mixed precision neural networks,”
in Proceedings of the IEEE/CVF Winter Conference on Applications of
Computer Vision, 2024, pp. 8460–8469.

[25] X. Lan, Y. Zeng, X. Wei, T. Zhang, Y. Wang, C. Huang, and W. He,
“Counterclockwise block-by-block knowledge distillation for neural
network compression,” Scientific Reports, vol. 15, no. 1, p. 11369, 2025.

[26] A. A. Neeralgi, R. R. Avarsekar, M. Bhajantri, R. Khatod, U. Kulkarni,
and S. M. Nadaf, “Knowledge distillation using deep learning tech-
niques: A survey,” in 2024 IEEE Conference on Engineering Informatics
(ICEI). IEEE, 2024, pp. 1–10.

[27] L. Chen, D. Chai, and L. Wang, “Uctb: An urban computing tool box
for spatiotemporal crowd flow prediction,” arXiv: 2306.04144, 2023.

[28] Y. Lu, M. Shen, H. Wang, X. Wang, C. van Rechem, T. Fu, and
W. Wei, “Machine learning for synthetic data generation: a review,”
arXiv preprint arXiv:2302.04062, 2023.

[29] V. C. Pezoulas, D. I. Zaridis, E. Mylona, C. Androutsos, K. Apostolidis,
N. S. Tachos, and D. I. Fotiadis, “Synthetic data generation methods in
healthcare: A review on open-source tools and methods,” Computational
and structural biotechnology journal, vol. 23, pp. 2892–2910, 2024.

[30] L. Sobrie and M. Verschelde, “Real-time decision support for human–
machine interaction in digital railway control rooms,” Decision Support
Systems, vol. 181, p. 114216, 2024.

15

